Skip to main content
Log in

Structural features specific to plant metallothioneins

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The metallothionein (MT) superfamily combines a large variety of small cysteine-rich proteins from nearly all phyla of life that have the ability to coordinate various transition metal ions, including ZnII, CdII, and CuI. The members of the plant MT family are characterized by great sequence diversity, requiring further subdivision into four subfamilies. Very peculiar and not well understood is the presence of rather long cysteine-free amino acid linkers between the cysteine-rich regions. In light of the distinct differences in sequence to MTs from other families, it seems obvious to assume that these differences will also be manifested on the structural level. This was already impressively demonstrated with the elucidation of the three-dimensional structure of the wheat Ec-1 MT, which revealed two metal cluster arrangements previously unprecedented for any MT. However, as this structure is so far the only one available for the plant MT family, other sources of information are in high demand. In this review the focus is thus set on any structural features known, deduced, or assumed for the plant MT proteins. This includes the determination of secondary structural elements by circular dichroism, IR, and Raman spectroscopy, the analysis of the influence of the long linker regions, and the evaluation of the spatial arrangement of the sequence separated cysteine-rich regions with the aid of, e.g., limited proteolytic digestion. In addition, special attention is paid to the contents of divalent metal ions as the metal ion to cysteine ratios are important for predicting and understanding possible metal–thiolate cluster structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Margoshes M, Vallee BL (1957) J Am Chem Soc 79:4813–4814

    Article  CAS  Google Scholar 

  2. Hanley-Bowdoin L, Lane BG (1983) Eur J Biochem 135:9–15

    Article  PubMed  CAS  Google Scholar 

  3. Lane BG, Kajioka R, Kennedy TD (1987) Biochem Cell Biol 65:1001–1005

    Article  CAS  Google Scholar 

  4. Kawashima I, Kennedy TD, Chino M, Lane BG (1992) Eur J Biochem 209:971–976

    Article  PubMed  CAS  Google Scholar 

  5. Kille P, Winge DR, Harwood JL, Kay J (1991) FEBS Lett 295:171–175

    Article  PubMed  CAS  Google Scholar 

  6. Abdullah SNA, Cheah SC, Murphy DJ (2002) Plant Physiol Biochem 40:255–263

    Article  CAS  Google Scholar 

  7. Mir G, Domènech J, Huguet G, Guo W-J, Goldsbrough P, Atrian S, Molinas M (2004) J Exp Bot 55:2483–2493

    Article  PubMed  CAS  Google Scholar 

  8. Kägi JHR, Himmelhoch SR, Whanger PD, Bethune JL, Vallee BL (1974) J Biol Chem 249:3537–3542

    PubMed  Google Scholar 

  9. Kojima Y, Berger C, Vallee BL, Kägi JHR (1976) Proc Natl Acad Sci USA 73:3413–3417

    Article  PubMed  CAS  Google Scholar 

  10. Kojima Y, Binz P-A, Kägi JHR (1999) In: Klaassen C (ed) Metallothionein IV. Birkhäuser, Basel, pp 3–6

  11. Freisinger E (2008) Dalton Trans 6663–6675

  12. Freisinger E (2009) Met Ions Life Sci 5:107–153

    Article  CAS  Google Scholar 

  13. Blindauer CA, Harrison MD, Parkinson JA, Robinson AK, Cavet JS, Robinson NJ, Sadler PJ (2001) Proc Natl Acad Sci USA 98:9593–9598

    Article  PubMed  CAS  Google Scholar 

  14. Peroza EA, Schmucki R, Güntert P, Freisinger E, Zerbe O (2009) J Mol Biol 387:207–218

    Article  PubMed  CAS  Google Scholar 

  15. Braun W, Vašák M, Robbins AH, Stout CD, Wagner G, Kägi JHR, Wüthrich K (1992) Proc Natl Acad Sci USA 89:10124–10128

    Article  PubMed  CAS  Google Scholar 

  16. Riek R, Prêcheur B, Wang Y, Mackay EA, Wider G, Güntert P, Liu A, Kägi JHR, Wüthrich K (1999) J Mol Biol 291:417–428

    Article  PubMed  CAS  Google Scholar 

  17. Capasso C, Carginale V, Crescenzi O, Di Maro D, Parisi E, Spadaccini R, Temussi PA (2003) Structure (Camb) 11:435–443

    Article  CAS  Google Scholar 

  18. Öz G, Zangger K, Armitage IM (2001) Biochemistry (USA) 40:11433–11441

    Article  Google Scholar 

  19. Wang H, Zhang Q, Cai B, Li HY, Sze KH, Huang ZX, Wu HM, Sun HZ (2006) FEBS Lett 580:795–800

    Article  PubMed  CAS  Google Scholar 

  20. Arseniev A, Schultze P, Worgotter E, Braun W, Wagner G, Vašák M, Kägi JHR, Wüthrich K (1988) J Mol Biol 201:637–657

    Article  PubMed  CAS  Google Scholar 

  21. Messerle BA, Schaffer A, Vašák M, Kägi JHR, Wüthrich K (1990) J Mol Biol 214:765–779

    Article  PubMed  CAS  Google Scholar 

  22. Schultze P, Worgotter E, Braun W, Wagner G, Vašák M, Kägi JHR, Wüthrich K (1988) J Mol Biol 203:251–268

    Article  PubMed  CAS  Google Scholar 

  23. Zangger K, Öz G, Otvos JD, Armitage IM (1999) Protein Sci 8:2630–2638

    Article  PubMed  CAS  Google Scholar 

  24. Muñoz A, Försterling FH, Shaw CF III, Petering DH (2002) J Biol Inorg Chem 7:713–724

    Article  PubMed  Google Scholar 

  25. Narula SS, Brouwer M, Hua Y, Armitage IM (1995) Biochemistry (USA) 34:620–631

    Article  CAS  Google Scholar 

  26. Loebus J, Peroza EA, Blüthgen N, Fox T, Meyer-Klaucke W, Zerbe O, Freisinger E (2011) J Biol Inorg Chem 16:683–694

    Article  PubMed  CAS  Google Scholar 

  27. Faller P, Vašák M (1997) Biochemistry (USA) 36:13341–13348

    Article  CAS  Google Scholar 

  28. Nielson KB, Winge DR (1984) J Biol Chem 259:4941–4946

    PubMed  CAS  Google Scholar 

  29. Calderone V, Dolderer B, Hartmann HJ, Echner H, Luchinat C, Del Bianco C, Mangani S, Weser U (2005) Proc Natl Acad Sci USA 102:51–56

    Article  PubMed  CAS  Google Scholar 

  30. Bilecen K, Ozturk UH, Duru AD, Sutlu T, Petoukhov MV, Svergun DI, Koch MHJ, Sezerman UO, Cakmak I, Sayers Z (2005) J Biol Chem 280:13701–13711

    Article  PubMed  CAS  Google Scholar 

  31. Schicht O (2007) PhD thesis, University of Zurich

  32. Schicht O, Freisinger E (2009) Inorg Chim Acta 362:714–724

    Article  CAS  Google Scholar 

  33. Tommey AM, Shi J, Lindsay WP, Urwin PE, Robinson NJ (1991) FEBS Lett 292:48–52

    Article  PubMed  CAS  Google Scholar 

  34. Wan X (2009) PhD thesis, University of Zurich

  35. Wan X, Freisinger E (2009) Metallomics 1:489–500

    Article  PubMed  CAS  Google Scholar 

  36. Huang G-Y, Wang Y-S (2010) Aquat Toxicol 99:86–92

    Article  PubMed  CAS  Google Scholar 

  37. Torreggiani A, Domènech J, Tinti A (2009) J Raman Spectrosc 40:1687–1693

    Article  CAS  Google Scholar 

  38. Freisinger E (2007) Inorg Chim Acta 360:369–380

    Article  CAS  Google Scholar 

  39. Chyan CL, Lee TT, Liu CP, Yang YC, Tzen JT, Chou WM (2005) Biosci Biotechnol Biochem 69:2319–2325

    Article  PubMed  CAS  Google Scholar 

  40. Rost B, Fariselli P, Casadio R (1996) Protein Sci 5:1704–1718

    Article  PubMed  CAS  Google Scholar 

  41. Rost B, Sander C (1993) J Mol Biol 232:584–599

    Article  PubMed  CAS  Google Scholar 

  42. Domènech J, Tinti A, Capdevila M, Atrian S, Torreggiani A (2007) Biopolymers 86:240–248

    Article  PubMed  Google Scholar 

  43. Alix AJP, Pedanou G, Berjot M (1988) J Mol Struct 174:159–164

    Article  CAS  Google Scholar 

  44. Jackson M, Mantsch HH (1995) Crit Rev Biochem Mol 30:95–120

    Article  CAS  Google Scholar 

  45. Byler DM, Susi H (1986) Biopolymers 25:469–487

    Article  PubMed  CAS  Google Scholar 

  46. Shi YB, Fang JL, Liu XY, Du L, Tang WX (2002) Biopolymers 65:81–88

    Article  PubMed  CAS  Google Scholar 

  47. Zhu C, Lü T, Zhang R, Zhao N, Liu J (2000) Chin Sci Bull 45:1413–1417

    Article  CAS  Google Scholar 

  48. Domènech J, Mir G, Huguet G, Capdevila M, Molinas M, Atrian S (2006) Biochimie 88:583–593

    Article  PubMed  Google Scholar 

  49. Tanaka T, Kuroda Y, Yokoyama S (2003) J Struct Funct Genomics 4:79–85

    Article  PubMed  CAS  Google Scholar 

  50. Miyazaki S, Kuroda Y, Yokoyama S (2002) J Struct Funct Genomics 2:37–51

    Article  PubMed  CAS  Google Scholar 

  51. Rhee IK, Lee KS, Huang PC (1990) Protein Eng 3:205–213

    Article  PubMed  CAS  Google Scholar 

  52. Jiang LJ, Vašák M, Vallee BL, Maret W (2000) Proc Natl Acad Sci USA 97:2503–2508

    Article  PubMed  CAS  Google Scholar 

  53. Ngu TT, Easton A, Stillman MJ (2008) J Am Chem Soc 130:17016–17028

    Article  PubMed  CAS  Google Scholar 

  54. de Miranda JR, Thomas MA, Thurman DA, Tomsett AB (1990) FEBS Lett 260:277–280

    Article  PubMed  Google Scholar 

  55. Peroza EA, Al Kaabi A, Meyer-Klaucke W, Wellenreuther G, Freisinger E (2009) J Inorg Biochem 103:342–353

    Article  PubMed  CAS  Google Scholar 

  56. Peroza EA, Freisinger E (2007) J Biol Inorg Chem 12:377–391

    Article  PubMed  CAS  Google Scholar 

  57. Baleja JD, Thanabal V, Wagner G (1997) J Biomol NMR 10:397–401

    Article  PubMed  CAS  Google Scholar 

  58. Leszczyszyn OI, Schmid R, Blindauer CA (2007) Proteins Struct Funct Bioinform 68:922–935

    Article  CAS  Google Scholar 

  59. dos Santos Cabral A (2010) PhD thesis, University of Zurich

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation (SNSF Professorship PP002-119106/1 to E.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Freisinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freisinger, E. Structural features specific to plant metallothioneins. J Biol Inorg Chem 16, 1035–1045 (2011). https://doi.org/10.1007/s00775-011-0801-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0801-z

Keywords

Navigation