Skip to main content
Log in

ISC-like [2Fe–2S] ferredoxin (FdxB) dimer from Pseudomonas putida JCM 20004: structural and electron–nuclear double resonance characterization

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The crystal structure of the ISC-like [2Fe–2S] ferredoxin (FdxB), probably involved in the de novo iron-sulfur cluster biosynthesis (ISC) system of Pseudomonas putida JCM 20004, was determined at 1.90-Å resolution and displayed a novel tail-to-tail dimeric form. P. putida FdxB lacks the consensus free cysteine usually present near the cluster of ISC-like ferredoxins, indicating its primarily electron transfer role in the iron-sulfur cluster. Orientation-selective electron–nuclear double resonance spectroscopic analysis of reduced FdxB in conjunction with the crystal structure has identified the innermost Fe2 site with a high positive spin population as the nonreducible iron retaining the Fe3+ valence and the outermost Fe1 site as the reduced iron with a low negative spin density. The average g max direction is skewed, forming an angle of about 27.3° (±4°) with the normal of the [2Fe–2S] plane, whereas the g int and g min directions are distributed in the cluster plane, presumably tilted by the same angle with respect to this plane. These results are related to those for other [2Fe–2S] proteins in different electron transport chains (e.g. adrenodoxin) and suggest a significant distortion of the electronic structure of the reduced [2Fe–2S] cluster under the influence of the protein environment around each iron site in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Adx:

Adrenodoxin

CW:

Continuous-wave

ENDOR:

Electron-nuclear double resonance

EPR:

Electron paramagnetic resonance

FdVI:

ISC-like [2Fe–2S] ferredoxin from Rhodobacter capsulatus

Fdx:

[2Fe–2S] ferredoxin involved in the ISC pathway

FdxB:

ISC-like [2Fe–2S] ferredoxin from Pseudomonas putida JCM 20004

Fe–S:

Iron–sulfur

Pdx:

Putidaredoxin

References

  1. Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314

    Article  PubMed  CAS  Google Scholar 

  2. Adams MWW (1992) Adv Inorg Chem 38:341–396

    Article  CAS  Google Scholar 

  3. Beinert H, Holm RH, Münck E (1997) Science 277:653–659

    Article  PubMed  CAS  Google Scholar 

  4. Beinert H (2000) J Biol Inorg Chem 5:2–15

    Article  PubMed  CAS  Google Scholar 

  5. Gibson JF, Hall DO, Thornley JHM, Whatley FR (1966) Proc Natl Acad Sci USA 56:987–990

    Article  PubMed  CAS  Google Scholar 

  6. Bertrand P, Gayda J-P (1979) Biochim Biophys Acta 579:107–121

    PubMed  CAS  Google Scholar 

  7. Bowman MK, Berry EA, Roberts AG, Kramer DM (2004) Biochemistry 43:430–436

    Article  PubMed  CAS  Google Scholar 

  8. Kappl R, Bracic G, Hüttermann J (2009) In: Hanson G, Berliner L (eds) High resolution EPR: applications to metalloenzymes and metals in medicine, vol 28. Springer, New York, pp 63–103

    Google Scholar 

  9. Kappl R, Ebelshäuser M, Hannemann F, Berhardt R, Hüttermann J (2006) Appl Magn Reson 30:427–459

    Article  CAS  Google Scholar 

  10. Canne C, Ebelshäuser M, Gay E, Shergill JK, Cammack R, Kappl R, Hüttermann J (2000) J Biol Inorg Chem 5:514–526

    Article  PubMed  CAS  Google Scholar 

  11. Bertrand P, Guigliarelli B, Gayda J-P, Beardwood P, Gibson JF (1985) Biochim Biophys Acta 831:261–266

    Article  CAS  Google Scholar 

  12. Bertrand P, More C, Guigliarelli B, Fournel A, Bennett B, Howes BJ (1994) J Am Chem Soc 116:3078–3086

    Article  CAS  Google Scholar 

  13. Guigliarelli B, Bertrand P (1999) Adv Inorg Chem 47:421–497

    Article  CAS  Google Scholar 

  14. More C, Asso M, Roger G, Guigliarelli B, Caldeira J, Moura J, Bertrand P (2005) Biochemistry 44:11628–11635

    Article  PubMed  CAS  Google Scholar 

  15. Dikanov SA, Kolling DRJ, Endeward B, Samoilova RI, Prisner TF, Nair SK, Crofts AR (2006) J Biol Chem 281:27416–27425

    Article  PubMed  CAS  Google Scholar 

  16. Iwasaki T, Samoilova RI, Kounosu A, Ohmori D, Dikanov SA (2009) J Am Chem Soc 131:13659–13667

    Article  PubMed  CAS  Google Scholar 

  17. Dicus MM, Conlan A, Nechushtai R, Jennings PA, Paddock ML, Britt RD, Stoll S (2010) J Am Chem Soc 132:2037–2049

    Article  PubMed  CAS  Google Scholar 

  18. Lovett JE, Bowen AM, Timmel CR, Jones MW, Dilworth JR, Caprotti D, Bell SG, Wong LL, Harmer J (2009) Phys Chem Chem Phys 11:6840–6848

    Article  PubMed  CAS  Google Scholar 

  19. Roessler MM, King MS, Robinson AJ, Armstrong FA, Harmer J, Hirst J (2010) Proc Natl Acad Sci USA 107:1930–1935

    Article  PubMed  CAS  Google Scholar 

  20. Iwasaki T, Ohmori D, Shimizu N, Kumasaka T (2007) Acta Crystallogr Sect F 63:1014–1016

    Article  Google Scholar 

  21. Ohmori D, Yamakura F, Suzuki K (1989) Biochem Int 18:573–580

    PubMed  CAS  Google Scholar 

  22. Ohmori D (1984) Biochim Biophys Acta 790:15–21

    Article  CAS  Google Scholar 

  23. Ewen KM, Kleser M, Bernhardt R (2011) Biochim Biophys Acta 1814:111–125

    PubMed  CAS  Google Scholar 

  24. Takahashi Y, Nakamura M (1999) J Biochem 126:917–926

    PubMed  CAS  Google Scholar 

  25. Kakuta Y, Horio T, Takahashi Y, Fukuyama K (2001) Biochemistry 40:11007–11012

    Article  PubMed  CAS  Google Scholar 

  26. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Annu Rev Biochem 74:247–281

    Article  PubMed  CAS  Google Scholar 

  27. Bandyopadhyay S, Chandramouli K, Johnson MK (2008) Biochem Soc Trans 36:1112–1119

    Article  PubMed  CAS  Google Scholar 

  28. Sheftel AD, Stehling O, Pierik AJ, Elsässer H-P, Mühlenhoff U, Webert H, Hobler A, Hannemann F, Bernhardt R, Lill R (2010) Proc Natl Acad Sci USA 107:11775–11780

    Article  PubMed  CAS  Google Scholar 

  29. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen JA, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM (2002) Environ Microbiol 4:799–808

    Article  PubMed  CAS  Google Scholar 

  30. Kounosu A, Li Z, Cosper NJ, Shokes JE, Scott RA, Imai T, Urushiyama A, Iwasaki T (2004) J Biol Chem 279:12519–12528

    Article  PubMed  CAS  Google Scholar 

  31. Iwasaki T, Kounosu A, Kolling DRJ, Crofts AR, Dikanov SA, Jin A, Imai T, Urushiyama A (2004) J Am Chem Soc 126:4788–4789

    Article  PubMed  CAS  Google Scholar 

  32. Matthews BW (1968) J Mol Biol 33:491–497

    Article  PubMed  CAS  Google Scholar 

  33. Vagin A, Teplyakov A (1997) J Appl Crystallogr 30:1022–1025

    Article  CAS  Google Scholar 

  34. Emsley P, Cowtan K (2004) Acta Crystallogr Sect D 60:2126–2132

    Article  Google Scholar 

  35. Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr Sect D 53:240–255

    Article  CAS  Google Scholar 

  36. Müller A, Müller JJ, Muller YA, Uhlmann H, Bernhardt R, Heinemann U (1998) Structure 6:269–280

    Article  PubMed  Google Scholar 

  37. Pikuleva IA, Tesh K, Waterman MR, Kim Y (2000) Arch Biochem Biophys 373:44–55

    Article  PubMed  CAS  Google Scholar 

  38. Sevrioukova IF, Garcia C, Li H, Bhaskar B, Poulos TL (2003) J Mol Biol 333:377–392

    Article  PubMed  CAS  Google Scholar 

  39. Servrioukova IF (2005) J Mol Biol 347:607–621

    Article  Google Scholar 

  40. Sainz G, Jakoncic J, Sieker LC, Stojanoff V, Sanishvili N, Asso M, Bertrand P, Armengaud J, Jouanneau Y (2006) J Biol Inorg Chem 11:235–246

    Article  PubMed  CAS  Google Scholar 

  41. Krissinel E, Henrick K (2007) J Mol Biol 372:774–797

    Article  PubMed  CAS  Google Scholar 

  42. Ayala-Castro C, Saini A, Outten FW (2008) Microbiol Mol Biol Rev 72:110–125

    Article  PubMed  CAS  Google Scholar 

  43. Grinberg AV, Hannemann F, Schiffler B, Müller J, Heinemann U, Bernhardt R (2000) Proteins 40:590–612

    Article  PubMed  CAS  Google Scholar 

  44. Garman E (2003) Curr Opin Struct Biol 13:545–551

    Article  PubMed  CAS  Google Scholar 

  45. Sommerhalter M, Lieberman RL, Rosenzweig AC (2005) Inorg Chem 44:770–778

    Article  PubMed  CAS  Google Scholar 

  46. Corbett MC, Latimer MJ, Poulos TL, Sevrioukova IF, Hodgson KO, Hedman B (2007) Acta Crystallogr Sect D 63:951–960

    Article  Google Scholar 

  47. Davydov A, Davydov R, Gräslund A, Lipscomb JD, Andersson KK (1997) Biochemistry 272:7022–7026

    CAS  Google Scholar 

  48. Barros MH, Nobrega FG (1999) Gene 233:197–203

    Article  PubMed  CAS  Google Scholar 

  49. Lange H, Kaut A, Kispal G, Lill R (2000) Proc Natl Acad Sci USA 97:1050–1055

    Article  PubMed  CAS  Google Scholar 

  50. Barros MH, Nobrega FG, Tzagoloff A (2002) J Biol Chem 277:9997–10002

    Article  PubMed  CAS  Google Scholar 

  51. Lill R, Mühlenhoff U (2008) Annu Rev Biochem 77:669–700

    Article  PubMed  CAS  Google Scholar 

  52. Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK (2000) Biochemistry 39:7856–7862

    Article  PubMed  CAS  Google Scholar 

  53. Chandramouli K, Unciuleac M-C, Naik S, Dean DR, Huynh BH, Johnson MK (2007) Biochemistry 46:6804–6811

    Article  PubMed  CAS  Google Scholar 

  54. Fritz J, Anderson R, Fee J, Palmer G, Sands RH, Tsibris JC, Gunsalus IC, Orme-Johnson WH, Beinert H (1971) Biochim Biophys Acta 253:110–133

    Article  PubMed  CAS  Google Scholar 

  55. Dunham WR, Sands RH (2003) Biochem Biophys Res Commun 312:255–261

    Article  PubMed  CAS  Google Scholar 

  56. Gille C, Frömmel C (2001) Bioinformatics 17:377–378

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Asako Kounosu (Nippon Medical School) for assistance in several sample preparations. This investigation was supported in part by JSPS Grants-in-Aid 18608004 (T.I.), 21659111 (T.I.), and 20500628 (D.O.), a JSPS Bottom-up International Joint Research Program (International Collaborations in Chemistry) grant (T.I.), and grants from the EU and the DFG to R.K. and formerly to Jürgen Hüttermann, whose support over many years is gratefully acknowledged. The diffraction data were collected at the SPring-8 beamline BL41XU with the approval of the Japan Synchrotron Radiation Research Institute (JASRI; proposal no. 2007A1271-NL-np). The coordinates and structural factors have been deposited in the Protein Data Bank (ID 3AH7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toshio Iwasaki, Reinhard Kappl or Takashi Kumasaka.

Additional information

An interactive 3D complement page in Proteopedia is available at http://proteopedia.org/wiki/index.php/Journal:JBIC:12.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary materials (PDF 846 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwasaki, T., Kappl, R., Bracic, G. et al. ISC-like [2Fe–2S] ferredoxin (FdxB) dimer from Pseudomonas putida JCM 20004: structural and electron–nuclear double resonance characterization. J Biol Inorg Chem 16, 923–935 (2011). https://doi.org/10.1007/s00775-011-0793-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0793-8

Keywords

Navigation