Skip to main content
Log in

Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin (Tf) was investigated at various physiological iron to Tf concentration ratios. Loading percentages for these metal ions are based on a two Mn+ to one Tf (i.e., 100% loading) stoichiometry and were determined using a particle beam/hollow cathode–optical emission spectroscopy (PB/HC-OES) method. Serum iron concentrations typically found in normal, iron-deficient, iron-deficient from chronic disease, iron-deficient from inflammation, and iron-overload conditions were used to determine the effects of iron concentration on iron loading into Tf. The PB/HC-OES method allows the monitoring of metal ions in competition with Fe3+ for Tf binding. Iron-overload concentrations impeded the ability of chromium (15.0 μM) or nickel (10.3 μM) to load completely into Tf. Low Fe3+ uptake by Tf under iron-deficient or chronic disease iron concentrations limited Ni2+ loading into Tf. Competitive binding kinetic studies were performed with Fe3+, Cr3+, and Ni2+ to determine percentages of metal ion uptake into Tf as a function of time. The initial rates of Fe3+ loading increased in the presence of nickel or chromium, with maximal Fe3+ loading into Tf in all cases reaching approximately 24%. Addition of Cr3+ to 50% preloaded Fe3+–Tf showed that excess chromium (15.0 μM) displaced roughly 13% of Fe3+ from Tf, resulting in 7.6 ± 1.3% Cr3+ loading of Tf. The PB/HC-OES method provides the ability to monitor multiple metal ions competing for Tf binding and will help to understand metal competition for Tf binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, pp 141–148

    Google Scholar 

  2. Chua ACG, Graham RM (2007) Crit Rev Clin Lab Sci 44:413–459

    Article  PubMed  CAS  Google Scholar 

  3. Sun H, Cox MC, Li H, Sadler PJ (1997) Struct Bond 88:71–102

    CAS  Google Scholar 

  4. Rawas A, Moreton K, Muirhead H, Williams J (1989) J Mol Biol 208:213–214

    Article  PubMed  CAS  Google Scholar 

  5. Aisen P, Leibman A, Zweier J (1978) Biol Chem 253:1930–1937

    CAS  Google Scholar 

  6. Grossman JG, Neu M, Evans RW, Lindley PF, Appel H, Hasnain SS (1993) J Mol Biol 229:585–590

    Article  Google Scholar 

  7. Dautry-Varsat A, Ciechano A, Lodish HF (1983) Proc Natl Acad Sci USA 80:2258–2262

    Article  PubMed  CAS  Google Scholar 

  8. Sun H, Li H, Sadler PJ (1999) Chem Rev 99:2817–2842

    Article  PubMed  CAS  Google Scholar 

  9. Huebers H, Josephson B, Huebers E, Csiba E, Finch C (1981) Proc Natl Acad Sci USA 78:2572–2576

    Article  PubMed  CAS  Google Scholar 

  10. Williams J, Moreton K (1980) J Biochem 185:483–488

    CAS  Google Scholar 

  11. Byrne SL, Mason AB (2009) J Biol Inorg Chem 14:771–781

    Article  PubMed  CAS  Google Scholar 

  12. Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Cell 142:24–38

    Article  PubMed  CAS  Google Scholar 

  13. Punnonen K, Irjala K, Rajamaki A (1994) Clin Chem 40:774–776

    PubMed  CAS  Google Scholar 

  14. Punnonen K, Irjala K, Rajamaki A (1997) Blood 89:1052–1057

    PubMed  CAS  Google Scholar 

  15. Anderson RV, Tybjaerg-Hansen A, Appleyard M, Birgens H, Nordestgaard BG (2004) Blood 103:2914–2919

    Article  Google Scholar 

  16. Tinoco AD, Valentine AM (2005) J Am Chem Soc 127:11218–11219

    Article  PubMed  CAS  Google Scholar 

  17. Cox MC, Barnham KJ, Frenkiel TA, Hoeschele JD, Mason AB, He Q-Y, Woodworth RC, Sadler PJ (1999) J Biol Inorg Chem 4:621–631

    Article  PubMed  CAS  Google Scholar 

  18. Quarles CD Jr, Brumaghim JL, Marcus RK (2010) Metallomics 2:154–161

    Article  PubMed  CAS  Google Scholar 

  19. Masuoka J, Hegenauer J, Van Dyke BR, Saltman P (1993) J Biol Chem 268:21533–21537

    PubMed  CAS  Google Scholar 

  20. Tinoco AD, Eames EV, Valentine AM (2008) J Am Chem Soc 130:2262–2270

    Article  PubMed  CAS  Google Scholar 

  21. Clodfelder BJ, Emamaullee J, Hepburn DDD, Chakov NE, Nettles HS, Vincent JB (2001) J Biol Inorg Chem 6:608–617

    Article  PubMed  CAS  Google Scholar 

  22. Sun Y, Ramirez J, Woski SA, Vincent JB (2000) J Biol Inorg Chem 5:129–136

    Article  PubMed  CAS  Google Scholar 

  23. Quarles CD Jr, Brumaghim JL, Marcus RK (2010) Metallomics 2:792–799

    Article  PubMed  CAS  Google Scholar 

  24. Harris WR (1986) J Inorg Chem 27:41–52

    CAS  Google Scholar 

  25. Cefalu WT, Hu FB (2004) Diabetes Care 27:2741–2751

    Article  PubMed  CAS  Google Scholar 

  26. Vincent JB (2000) J Nutr 130:715–718

    PubMed  CAS  Google Scholar 

  27. Di Bona KR, Love S, Rhodes NR, McAdory D, Sinha SH, Kern N, Kent J, Strickland J, Wilson A, Beaird J, Ramage J, Rasco JF, Vincent JB (2011) J Biol Inorg Chem 16:381–390

    Article  PubMed  Google Scholar 

  28. Zalups RK, Koropatnick J (2000) Molecular biology and toxicology of metals. Taylor and Francis, New York, pp 113–128

    Google Scholar 

  29. Jeejeebhoy KN (1999) Nutr Rev 57:329–335

    Article  PubMed  CAS  Google Scholar 

  30. Lavi N, Alfassi ZB (1990) Analyst 115:817–822

    Article  PubMed  CAS  Google Scholar 

  31. Vincent JB (2000) Acc Chem Res 33:503–510

    Article  PubMed  CAS  Google Scholar 

  32. Clodfelder BJ, Upchurch RG, Vincent JB (2004) J Inorg Chem 98:522–533

    CAS  Google Scholar 

  33. Denkhaus E, Salnikow K (2002) Crit Rev Oncol Hematol 42:35–56

    Article  PubMed  CAS  Google Scholar 

  34. Howard JMH (1980) Clin Chem 26:1515

    PubMed  CAS  Google Scholar 

  35. Noveli EL, Rodrigues NL, Ribas BO (1995) Hum Exp Toxicol 14:248–251

    Article  Google Scholar 

  36. Sunderman FW, Dingle B, Hopfer SM, Swift T (1988) Am J Ind Med 14:257–266

    Article  PubMed  Google Scholar 

  37. Templeton DM, Sunderman FW Jr, Herber RFM (1994) Sci Tot Environ 148:243–251

    Article  CAS  Google Scholar 

  38. Costa M, Zhuang Z, Huang X, Cosentino S, Klein CB, Salnikow K (1994) Sci Total Environ 148:191–199

    Article  PubMed  CAS  Google Scholar 

  39. Kasprzak KS, Gabryel P, Jarczewska K (1983) Carcinogenesis 4:275–279

    Article  PubMed  CAS  Google Scholar 

  40. Chen H, Davidson T, Singleton S, Garrick MD, Costa M (2005) Toxicol Appl Pharmacol 206:275–287

    Article  PubMed  CAS  Google Scholar 

  41. Davidson T, Chen H, Garrick MD, D’Angelo G, Costa M (2005) Mol Cell Biochem 279:157–162

    Article  PubMed  CAS  Google Scholar 

  42. Brewer TM, Marcus RK (2007) Anal Chem 79:2402–2411

    Article  PubMed  CAS  Google Scholar 

  43. Dempster MA, Marcus RK (2000) J Anal At Spectrom 15:43–48

    Article  CAS  Google Scholar 

  44. Jin F, Marcus RK (2003) J Anal At Spectrom 18:589–595

    Article  CAS  Google Scholar 

  45. Battin EE, Lawhon A, Hamilton DH, Brumaghim JL (2009) J Chem Educ 86:969–972

    Article  CAS  Google Scholar 

  46. Evans RW, Williams J (1978) Biochem J 173:543–552

    PubMed  CAS  Google Scholar 

  47. Brewer TM, Castro J, Marcus RK (2006) Spectrochim Acta Part B At Spectrom 61:134–149

    Article  Google Scholar 

  48. Brewer TM, Fernandez B, Marcus RK (2005) J Anal At Spectrom 20:924–931

    Article  CAS  Google Scholar 

  49. Jin F, Lenghaus K, Hickman J, Marcus RK (2003) Anal Chem 75:4801–4810

    Article  PubMed  CAS  Google Scholar 

  50. Quarles CD Jr, Marcus RK (2009) Spectrochim Acta Part B At Spectrom 64:1185–1193

    Article  Google Scholar 

  51. You J, Dempster MA, Marcus RK (1997) Anal Chem 69:3419–3426

    Article  PubMed  CAS  Google Scholar 

  52. You J, Fanning JC, Marcus RK (1994) Anal Chem 66:3916–3924

    Article  CAS  Google Scholar 

  53. Minoia C, Cavalleri A (1988) Sci Total Environ 71:323–327

    Article  PubMed  CAS  Google Scholar 

  54. Groessl M, Terenghi M, Casini A, Elviri L, Lobinski R, Dyson PJ (2010) J Anal At Spectrom 25:305–313

    Article  PubMed  CAS  Google Scholar 

  55. Osaki S, Johnson DA, Frieden E (1966) J Biol Chem 241:2746–2751

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia L. Brumaghim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quarles, C.D., Marcus, R.K. & Brumaghim, J.L. Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin. J Biol Inorg Chem 16, 913–921 (2011). https://doi.org/10.1007/s00775-011-0792-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0792-9

Keywords

Navigation