Skip to main content
Log in

Correlated wavefunction methods in bioinorganic chemistry

  • Commentary
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this commentary the challenges faced in the application of wavefunction-based ab initio methods to (open-shell) transition metal complexes of (bio)inorganic interest are briefly touched on. Both single-reference and multireference methods are covered. It is stressed that the generation and nature of the reference wavefunction is a subject of major importance. How erroneous results can be easily obtained even with coupled-cluster theory is illustrated through the example of the septet–quintet separation in iron(IV)–oxo complexes. Second, the interplay between relativistic and correlation effects is important. This is demonstrated with coupled-cluster calculations on models for dinuclear copper active sites, where relativity has a major influence on the relative stabilities of the bis(μ-oxo) and side-on peroxo species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Neese F (2009) Coord Chem Rev 253:526–563

    Article  CAS  Google Scholar 

  2. Neese F (2006) J Biol Inorg Chem 11:702–711

    Article  PubMed  CAS  Google Scholar 

  3. Karton A, Rabinovich E, Martin JML, Ruscic B (2006) J Chem Phys 125

  4. Kossmann S, Neese F (2010) J Chem Theory Comput 6:2325–2338

    Article  CAS  Google Scholar 

  5. Bühl M, Reimann C, Pantazis DA, Bredow T, Neese F (2008) J Chem Theory Comput 4:1449–1459

    Google Scholar 

  6. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:19

    Article  Google Scholar 

  7. Grimme S, Antony J, Schwabe T, Mück-Lichtenfeld C (2007) Org Biomol Chem 5:741–758

    Article  PubMed  CAS  Google Scholar 

  8. Siegbahn PEM, Blomberg MRA, Chen SL (2010) J Chem Theory Comput 6:2040–2044

    Article  CAS  Google Scholar 

  9. Eriksson LA, Pettersson LGM, Siegbahn PEM, Wahlgren U (1995) J Chem Phys 102:872–878

    Article  CAS  Google Scholar 

  10. Siegbahn PEM (1996) In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 93, pp 333–387

  11. Siegbahn PEM, Blomberg MRA (1999) Annu Rev Phys Chem 50:221–249

    Article  PubMed  CAS  Google Scholar 

  12. Neese F (2009) Coord Chem Rev 253:526–563

    Article  CAS  Google Scholar 

  13. Gauss J, Kallay M, Neese F (2009) J Phys Chem A 113:11541–11549

    Article  PubMed  CAS  Google Scholar 

  14. Vancoillie S, Chalupsky J, Ryde U, Solomon EI, Pierloot K, Neese F, Rulisek L (2010) J Phys Chem B 114:7692–7702

    Article  PubMed  CAS  Google Scholar 

  15. Vancoillie S, Rulisek L, Neese F, Pierloot K (2009) J Phys Chem A 113:6149–6157

    Article  PubMed  CAS  Google Scholar 

  16. Taylor PR (1992) In: Roos BO (ed) Lecture notes in quantum chemistry, vol 58. Springer, Berlin

  17. Roos BO (1999) Acc Chem Res 32:137–144

    Article  CAS  Google Scholar 

  18. Roos BO, Andersson K, Fulscher MP, SerranoAndres L, Pierloot K, Merchan M, Molina V (1996) J Mol Struct (Theochem) 388:257–276

    CAS  Google Scholar 

  19. Roos BO, Andersson K, Fulscher MP, Malmqvist PA, SerranoAndres L, Pierloot K, Merchan M (1996) In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 93, pp 219–331

  20. Angeli C, Cimiraglia R, Malrieu JP (2002) J Chem Phys 117:9138–9153

    Article  CAS  Google Scholar 

  21. Duboc C, Ganyushin D, Sivalingam K, Collomb MN, Neese F (2010) J Phys Chem A 114:10750–10758

    Article  PubMed  CAS  Google Scholar 

  22. Miralles J, Castell O, Caballol R, Malrieu JP (1993) Chem Phys 172:33–43

    Article  CAS  Google Scholar 

  23. Neese FJ (2003) J Chem Phys 119:9428–9443

    Article  CAS  Google Scholar 

  24. Schütz M, Werner HJ (2001) J Chem Phys 114:661–681

    Article  Google Scholar 

  25. Schütz M, Werner H (2000) J Chem Phys Lett 318:370–378

    Article  Google Scholar 

  26. Hampel C, Werner HJ (1996) J Chem Phys 104:6286–6297

    Article  CAS  Google Scholar 

  27. Neese F, Wennmohs F, Hansen A (2009) J Chem Phys 130:18

    Article  Google Scholar 

  28. Neese F, Hansen A, Liakos DG (2009) J Chem Phys 131:15

    Article  Google Scholar 

  29. Saebo S, Pulay P (1985) Chem Phys Lett 113:13–18

    Article  CAS  Google Scholar 

  30. Pulay P (1983) Chem Phys Lett 100:151–154

    Article  CAS  Google Scholar 

  31. Meyer W (1977) In: Schaefer HF III (ed) Methods of electronic structure theory. Plenum Press, New York

  32. Dieterich JM, Werner HJ, Mata RA, Metz S, Thiel W (2010) J Chem Phys 132:035101

    Article  PubMed  Google Scholar 

  33. Anoop A, Thiel W, Neese F (2010) J Chem Theory Comput 6:3137–3144

    Article  CAS  Google Scholar 

  34. Aquilante F, Pedersen TB, Lindh R, Roos BO, De Meras AS, Koch H (2008) J Chem Phys 129

  35. Koch H, Snachez de Meras A, Pedersen TB (2003) J Chem Phys 118:9481–9484

    Article  CAS  Google Scholar 

  36. Neese F, Wennmohs F, Hansen A, Becker U (2009) Chem Phys 356:98–109

    Article  CAS  Google Scholar 

  37. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  PubMed  CAS  Google Scholar 

  38. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  39. Dunning JTH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  40. Dunning JTH (1980) J Chem Phys 90:1007

    Article  Google Scholar 

  41. Pierloot K, Vancoillie S (2006) J Chem Phys 125

  42. Ye SF, Neese F (2010) Inorg Chem 49:772–774

    Article  PubMed  CAS  Google Scholar 

  43. Halkier A, Helgaker T, Jorgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243–252

    Article  CAS  Google Scholar 

  44. Figgen D, Peterson KA, Dolg M, Stoll H (2009) J Chem Phys 130

  45. Peterson KA, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126

  46. Balabanov NB, Peterson KA (2005) J Chem Phys 123:064107

    Article  Google Scholar 

  47. Helgaker T, Klopper W, Tew DP (2008) Mol Phys 106:2107–2143

    Article  CAS  Google Scholar 

  48. Adler TB, Werner H-J, Manby FRJ (2009) Chem Phys 130:054106

    Google Scholar 

  49. Werner H-J (2008) J Chem Phys 129:101103

    Article  PubMed  Google Scholar 

  50. Borowski T, Noack H, Radoń M, Zych K, Siegbahn PEM (2010) J Am Chem Soc 132:12887–12898

    Article  PubMed  CAS  Google Scholar 

  51. Pierloot K (2000) In: Cundari TR (ed) Computational organometallic chemistry. Dekker, New York

  52. Neuscamman E, Yanai T, Chan GKL (2010) Int Rev Phys Chem 29:231–271

    Article  CAS  Google Scholar 

  53. Pantazis DA, Neese F (2009) J Chem Theory Comput 5:2229–2238

    Article  CAS  Google Scholar 

  54. Pantazis DA, Chen XY, Landis CR, Neese F (2008) J Chem Theory Comput 4:908–919

    Article  CAS  Google Scholar 

  55. Gherman BF, Cramer CJ (2009) Coord Chem Rev 253:723–753

    Article  CAS  Google Scholar 

  56. DuBois JL, Mukherjee P, Collier AM, Mayer JM, Solomon EI, Hedman B, Stack TDP, Hodgson KO (1997) J Am Chem Soc 119:8578–8579

    Article  CAS  Google Scholar 

  57. Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013–1046

    Article  PubMed  CAS  Google Scholar 

  58. Siegbahn PEM (2003) J Biol Inorg Chem 8:577–585

    PubMed  CAS  Google Scholar 

  59. Siegbahn PEM, Wirstam M (2001) J Am Chem Soc 123:11819–11820

    Article  PubMed  CAS  Google Scholar 

  60. Cramer CJ, Kinal A, Wloch M, Piecuch P, Gagliardi L (2006) J Phys Chem A 110:11557–11568

    Article  PubMed  CAS  Google Scholar 

  61. Cramer CJ, Wloch M, Piecuch P, Puzzarini C, Gagliardi L (2006) J Phys Chem A 110:1991–2004

    Article  PubMed  CAS  Google Scholar 

  62. Olah J, Harvey JN (2009) J Phys Chem A 113:7338–7345

    Google Scholar 

  63. Hess BA, Marian CM (2000) In: Jensen P, Bunker PR (eds) Computational molecular spectroscopy. Wiley, New York

  64. Liakos DG, Neese FN (2011) J Chem Theory Comput. doi:10.1021/ct1006949

Download references

Acknowledgments

We gratefully acknowledge financial support of our work by the SFB 813 (“Chemistry at spin centers”), the SFB 624 (”Template effects in chemistry”), the Max Planck Society (via a Max Planck Society fellowship to F.N.), and the University of Bonn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Neese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neese, F., Liakos, D.G. & Ye, S. Correlated wavefunction methods in bioinorganic chemistry. J Biol Inorg Chem 16, 821–829 (2011). https://doi.org/10.1007/s00775-011-0787-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0787-6

Keywords

Navigation