Skip to main content
Log in

Effect of the charge distribution along the “ferritin-like” pores of the proteins from the Dps family on the iron incorporation process

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

DNA-binding proteins from starved cells (Dps) differ in the number and position of charged residues along the “ferritin-like” pores that are used by iron to reach the ferroxidase center and the protein cavity. These differences are shown to affect significantly the electrostatic potential at the pores, which determines the extent of cooperativity in the iron uptake kinetics and thereby the mass distribution of the ferric hydroxide micelles inside the protein cavity. These conclusions are of biotechnological value in the preparation of protein-enclosed nanomaterials and are expected to apply also to ferritins. They were reached after characterization of the Dps from Listeria innocua, Helicobacter pylori, Thermosynechococcus elongatus, Escherichia coli, and Mycobacterium smegmatis. The characterization comprised the calculation of the electrostatic potential at the pores, determination of the iron uptake kinetics in the presence of molecular oxygen or hydrogen peroxide, and analysis of the proteins by means of the sedimentation velocity after iron incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Banyard SH, Stammers DK, Harrison PM (1978) Nature 271:282–284

    Article  PubMed  CAS  Google Scholar 

  2. Ford GC, Harrison PM, Rice DW, Smith JM, Treffry A, White JL, Yariv J (1984) Philos Trans R Soc Lond B Biol Sci 304:551–565

    Article  PubMed  CAS  Google Scholar 

  3. Lawson DM, Treffry A, Artymiuk PJ, Harrison PM, Yewdall SJ, Luzzago A, Cesareni G, Levi S, Arosio P (1989) FEBS Lett 254:207–210

    Article  PubMed  CAS  Google Scholar 

  4. Stefanini S, Desideri A, Vecchini P, Drakenberg T, Chiancone E (1989) Biochemistry 28:378–382

    Article  PubMed  CAS  Google Scholar 

  5. Douglas T, Ripoll DR (1998) Protein Sci 7:1083–1091

    Article  PubMed  CAS  Google Scholar 

  6. Takahashi T, Kuyucak S (2003) Biophys J 84:2256–2263

    Article  PubMed  CAS  Google Scholar 

  7. Chiancone E, Ceci P (2010) Biochim Biophys Acta Gen Subj 1800:798–805

    Article  CAS  Google Scholar 

  8. Bellapadrona G, Stefanini S, Zamparelli C, Theil EC, Chiancone E (2009) J Biol Chem 284:19101

    Article  PubMed  CAS  Google Scholar 

  9. Parker MJ, Allen M, Ramsay B, Klem TM, Young MJ, Douglas T (2008) Chem Mater 20:1541–1547

    Article  CAS  Google Scholar 

  10. Gu QF, Krauss G, Steurer W, Gramm F, Cervellino A (2008) Phys Rev Lett 100:045502

    Google Scholar 

  11. Elnathan R, Kantaev R, Patolsky F (2008) Nano Lett 8:3964–3972

    Article  PubMed  CAS  Google Scholar 

  12. Kasyutich O, Ilari A, Fiorillo A, Tatchev D, Hoell A, Ceci P (2010) J Am Chem Soc 132:3621–3627

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki M, Abe M, Ueno T, Abe S, Goto T, Toda Y, Akita T, Yamada Y, Watanabe Y (2009) Chem Commun 4871–4873

  14. Lee LA, Wang Q (2006) Nanomedicine 2:137–149

    PubMed  CAS  Google Scholar 

  15. Harrison PM, Arosio P (1996) Biochim Biophys Acta 275:161–203

    Google Scholar 

  16. Carrondo MA (2003) EMBO J 22:1959–1968

    Article  PubMed  CAS  Google Scholar 

  17. Theil EC (2004) Annu Rev Nutr 24:327–343

    Article  PubMed  CAS  Google Scholar 

  18. Grant RA, Filman DJ, Finkel SE, Kolter R, Hogle JM (1998) Nat Struct Biol 5:294–303

    Article  PubMed  CAS  Google Scholar 

  19. Ilari A, Stefanini S, Chiancone E, Tsernoglou D (2000) Nat Struct Mol Biol 7:38–43

    Article  CAS  Google Scholar 

  20. Franceschini S, Ceci P, Alaleona F, Chiancone E, Ilari A (2006) FEBS J 273:4913–4928. doi:10.1111/j.1742-4658.2006.05490.x

    Article  PubMed  CAS  Google Scholar 

  21. Roy S, Gupta S, Das S, Sekar K, Chatterji D, Vijayan M (2004) J Mol Biol 339:1103–1113

    Article  PubMed  CAS  Google Scholar 

  22. Ceci P, Ilari A, Falvo E, Giangiacomo L, Chiancone E (2005) J Biol Chem 280:34776–34785. doi:10.1074/jbc.M502343200

    Article  PubMed  CAS  Google Scholar 

  23. Ceci P, Ilari A, Falvo E, Chiancone E (2003) J Biol Chem 278:20319–20326. doi:10.1074/jbc.M302114200

    Article  PubMed  CAS  Google Scholar 

  24. Zanotti G, Papinutto E, Dundon WG, Battistutta R, Seveso M, Giudice GD, Rappuoli R, Montecucco C (2002) J Mol Biol 323:125–130

    Article  PubMed  CAS  Google Scholar 

  25. Chiancone E, Ceci P (2010) Front Biosci 15:122–131

    Article  PubMed  CAS  Google Scholar 

  26. Ceci P, Cellai S, Falvo E, Rivetti C, Rossi GL, Chiancone E (2004) Nucleic Acids Res 32:5935–5944. doi:10.1093/nar/gkh915

    Article  PubMed  CAS  Google Scholar 

  27. Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chiancone E, Chasteen ND (2002) J Biol Chem 277:27689–27696. doi:10.1074/jbc.M202094200

    Article  PubMed  CAS  Google Scholar 

  28. Ilari A, Latella MC, Ceci P, Ribacchi F, Su M, Giangiacomo L, Stefanini S, Chasteen ND, Chiancone E (2005) Biochemistry 44:5579–5587. doi:10.1021/bi050005e

    Article  PubMed  CAS  Google Scholar 

  29. Ceci P, Mangiarotti L, Rivetti C, Chiancone E (2007) Nucleic Acids Res 35:2247–2256. doi:10.1093/nar/gkm077

    Article  PubMed  CAS  Google Scholar 

  30. Ceci P, Chiancone E, Kasyutich O, Bellapadrona G, Castelli L, Fittipaldi M, Gatteschi D (2010) Chemistry 16:709–717

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Y (2009) Prot Struct Funct Bioinform 77:100–113. doi:10.1002/prot.22588

    Article  CAS  Google Scholar 

  32. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Proc Natl Acad Sci USA 98:10037–10041

    Article  PubMed  CAS  Google Scholar 

  33. Ponder JW, Case DA (2003) Adv Prot Chem 66:27–85

    Article  CAS  Google Scholar 

  34. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

Download references

Acknowledgments

E.C. acknowledges the support of local grants from the Ministero dell’Università e Ricerca Scientifica (MIUR). F.O thanks Filas for a fellowship granted under the project “Caratterizzazione di principi attivi.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Chiancone.

Additional information

P. Ceci and G. Di Cecca contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceci, P., Di Cecca, G., Falconi, M. et al. Effect of the charge distribution along the “ferritin-like” pores of the proteins from the Dps family on the iron incorporation process. J Biol Inorg Chem 16, 869–880 (2011). https://doi.org/10.1007/s00775-011-0784-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0784-9

Keywords

Navigation