Skip to main content
Log in

Vanadyl bisacetylacetonate protects β cells from palmitate-induced cell death through the unfolded protein response pathway

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Endoplasmic reticulum (ER) stress induced by free fatty acids (FFA) is important to β-cell loss during the development of type 2 diabetes. To test whether vanadium compounds could influence ER stress and the responses in their mechanism of antidiabetic effects, we investigated the effects and the mechanism of vanadyl bisacetylacetonate [VO(acac)2] on β cells upon treatment with palmitate, a typical saturated FFA. The experimental results showed that VO(acac)2 could enhance FFA-induced signaling pathways of unfolded protein responses by upregulating the prosurvival chaperone immunoglobulin heavy-chain binding protein/78-kDa glucose-regulated protein and downregulating the expression of apoptotic C/EBP homologous protein, and consequently the reduction of insulin synthesis. VO(acac)2 also ameliorated FFA-disturbed Ca2+ homeostasis in β cells. Overall, VO(acac)2 enhanced stress adaption, thus protecting β cells from palmitate-induced apoptosis. This study provides some new insights into the mechanisms of antidiabetic vanadium compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

acac:

Acetylacetone

BiP/GRP78:

Immunoglobulin heavy-chain binding protein/78-kDa glucose-regulated protein

BSA:

Bovine serum albumin

cDNA:

Complementary DNA

CHOP:

C/EBP homologous protein

DCFH-DA:

2′,7′-Dichlorofluorescein diacetate

ER:

Endoplasmic reticulum

FBS:

Fetal bovine serum

FFA:

Free fatty acid

Fluo-3 AM:

1-[2-Amino-5-(2,7-dichloro-6-hydroxy-3-oxo-9-xanthenyl)phenoxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N′,N′-tetraacetic acid, pentaacetoxymethyl ester

HBSS:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid balanced salt solution

HEPES:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

IRE1α:

Inositol-requiring enzyme 1α

mRNA:

Messenger RNA

MTT:

3-(4,5-Dimethylthiazoyl-2-yl)-2,5-diphenyltetrazolium bromide

PBS:

Phosphate-buffered saline

PERK:

Protein kinase regulated by RNA-like endoplasmic-reticulum-associated kinase

PI:

Propidium iodide

ROS:

Reactive oxygen species

TBS:

20 mM tris(hydroxymethyl)aminomethane–HCl, 1.37 mM NaCl, pH 7.6

TBST:

20 mM tris(hydroxymethyl)aminomethane–HCl, 1.37 mM NaCl, pH 7 containing 0.1% Tween 20

Tris:

Tris(hydroxymethyl)aminomethane

UPR:

Unfolded protein response

VO(acac)2 :

Vanadyl bisacetylacetonate

Xbp-1:

X-box binding protein 1

References

  1. Poucheret P, Verma S, Grynpas MD, McNeill JH (1998) Mol Cell Biochem 188:73–80

    Article  PubMed  CAS  Google Scholar 

  2. Thompson KH, Orvig C (2006) J Inorg Biochem 100:1925–1935

    Article  PubMed  CAS  Google Scholar 

  3. Thompson KH, Lichter J, Lebel C, Scaife MC, McNeill JH, Orvig C (2009) J Inorg Biochem 103:554–558

    Article  PubMed  CAS  Google Scholar 

  4. Thompson KH (1999) Biofactors 10:43–51

    Article  PubMed  CAS  Google Scholar 

  5. Sakurai H, Yoshikawa Y, Yasui H (2008) Chem Soc Rev 37:2383–2392

    Article  PubMed  CAS  Google Scholar 

  6. Hiromura M, Adachi Y, Machida M, Hattori M, Sakurai H (2009) Metallomics 1:92–100

    Article  CAS  Google Scholar 

  7. Sakurai H, Katoh A, Kiss T, Jakusch T, Hattori M (2010) Metallomics 2:670–682

    Article  PubMed  CAS  Google Scholar 

  8. Margina D, Velescu B, Uivarosi V, Aldea V, Negres S, Mitrea N (2010) Febs J 277:61

    Google Scholar 

  9. Bolkent S, Bolkent S, Yanardag R, Tunali S (2005) Diabetes Res Clin Pract 70:103–109

    Article  PubMed  CAS  Google Scholar 

  10. Cam MC, Li WM, McNeill JH (1997) Metabolism 46:769–778

    Article  PubMed  CAS  Google Scholar 

  11. Shukla R, Padhye S, Modak M, Ghaskadbi SS, Bhonde RR (2007) Rev Diabet Stud 4:33–43

    Article  PubMed  CAS  Google Scholar 

  12. Saeki M, Maeda S, Kamisaki Y (2002) J Cell Biochem 85:721–727

    Article  PubMed  CAS  Google Scholar 

  13. Reaven GM, Hollenbeck C, Jeng CY, Wu MS, Chen YD (1988) Diabetes 37:1020–1024

    Article  PubMed  CAS  Google Scholar 

  14. McGarry JD, Dobbins RL (1999) Diabetologia 42:128–138

    Article  PubMed  CAS  Google Scholar 

  15. Shimabukuro M, Zhou YT, Levi M, Unger RH (1998) Proc Natl Acad Sci USA 95:2498–2502

    Article  PubMed  CAS  Google Scholar 

  16. Cnop M, Welsh N, Jonas J-C, Jörns A, Lenzen S, Eizirik DL (2005) Diabetes 54:S97–S107

    Article  PubMed  CAS  Google Scholar 

  17. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Diabetes 52:102–110

    Article  PubMed  CAS  Google Scholar 

  18. Ahren B (2005) Curr Mol Med 5:275–286

    Article  PubMed  CAS  Google Scholar 

  19. Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL (2004) Endocrinology 145:5087–5096

    Article  PubMed  CAS  Google Scholar 

  20. Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A (2006) Endocrinology 147:3398–3407

    Article  PubMed  CAS  Google Scholar 

  21. Wang H, Kouri G, Wollheim CB (2005) J Cell Sci 118:3905–3915

    Article  PubMed  CAS  Google Scholar 

  22. Schroder M, Kaufman RJ (2005) Mutat Res 569:29–63

    PubMed  Google Scholar 

  23. Boyce M, Yuan J (2006) Cell Death Differ 13:363–373

    Article  PubMed  CAS  Google Scholar 

  24. Cnop M, Ladriere L, Hekerman P, Ortis F, Cardozo AK, Dogusan Z, Flamez D, Boyce M, Yuan J, Eizirik DL (2007) J Biol Chem 282:3989–3997

    Article  PubMed  CAS  Google Scholar 

  25. Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ (2008) J Clin Invest 118:3378–3389

    Article  PubMed  CAS  Google Scholar 

  26. Cunha DA, Hekerman P, Ladriere L, Bazarra-Castro A, Ortis F, Wakeham MC, Moore F, Rasschaert J, Cardozo AK, Bellomo E, Overbergh L, Mathieu C, Lupi R, Hai T, Herchuelz A, Marchetti P, Rutter GA, Eizirik DL, Cnop M (2008) J Cell Sci 121:2308–2318

    Article  PubMed  CAS  Google Scholar 

  27. Choi E, Kim HE, Shin HC, Jang HJ, Lee KW, Kim YS, Kang SS, Chun JS, Kang Y (2007) Mol Cell Endocrinol 272:50–62

    Article  PubMed  CAS  Google Scholar 

  28. Lipson KL, Ghosh R, Urano F (2008) PLoS One 3:e1648

    Article  PubMed  Google Scholar 

  29. Yang XG, Yang XD, Yuan L, Wang K, Crans DC (2004) Pharm Res 21:1026–1033

    Article  PubMed  CAS  Google Scholar 

  30. Reul BA, Amin SS, Buchet JP, Ongemba LN, Crans DC, Brichard SM (1999) Br J Pharmacol 126:467–477

    Article  PubMed  CAS  Google Scholar 

  31. Zhang SQ, Zhong XY, Lu WL, Zheng L, Zhang X, Sun F, Fu GY, Zhang Q (2005) J Inorg Biochem 99:1064–1075

    Article  PubMed  CAS  Google Scholar 

  32. Amin SS, Cryer K, Zhang B, Dutta SK, Eaton SS, Anderson OP, Miller SM, Reul BA, Brichard SM, Crans DC (2000) Inorg Chem 39:406–416

    Article  PubMed  CAS  Google Scholar 

  33. Garribba E, Micera G, Sanna D (2006) Inorg Chim Acta 359:4470–4476

    Article  CAS  Google Scholar 

  34. Crans DC, Zhang B, Gaidamauskas E, Keramidas AD, Willsky GR, Roberts CR (2010) Inorg Chem 49:4245–4256

    Article  PubMed  CAS  Google Scholar 

  35. Sanna D, Buglyo P, Micera G, Garribba E (2010) J Biol Inorg Chem 15:825–839

    Article  PubMed  CAS  Google Scholar 

  36. Valko M, Morris H, Cronin MTD (2005) Curr Med Chem 12:1161–1208

    Article  PubMed  CAS  Google Scholar 

  37. Zhao YB, Ye LH, Liu HX, Xia Q, Zhang Y, Yang XD, Wang K (2010) J Inorg Biochem 104:371–378

    Article  PubMed  CAS  Google Scholar 

  38. Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ (2007) Diabetologia 50:752–763

    Article  PubMed  CAS  Google Scholar 

  39. Gething MJ (1999) Semin Cell Dev Biol 10:465–472

    Article  PubMed  CAS  Google Scholar 

  40. Suzuki T, Lu J, Zahed M, Kita K, Suzuki N (2007) Arch Biochem Biophys 468:1–14

    Article  PubMed  CAS  Google Scholar 

  41. Fonseca SG, Burcin M, Gromada J, Urano F (2009) Curr Opin Pharmacol 9:763–770

    Article  PubMed  CAS  Google Scholar 

  42. Kennedy BP (1999) Biomed Pharmacother 53:466–470

    Article  PubMed  CAS  Google Scholar 

  43. Sambrook JF (1990) Cell 61:197–199

    Article  PubMed  CAS  Google Scholar 

  44. Hosoi T, Saito A, Kume A, Okuma Y, Nomura Y, Ozawa K (2008) Eur J Pharmacol 594:44–48

    Article  PubMed  CAS  Google Scholar 

  45. Goc A (2006) Cent Eur J Biol 1:314–332

    Article  CAS  Google Scholar 

  46. Kim K-A, Lee M-S (2010) J Diabetes Invest 1:232–238

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project (no. 20971008) was supported by the NSFC and the Research Fund for the Doctoral Program of Higher Education of China. We thank John J. Hefferren of the University of Kansas for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siwang Yu or Xiaoda Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Z., Zhang, C., Yu, S. et al. Vanadyl bisacetylacetonate protects β cells from palmitate-induced cell death through the unfolded protein response pathway. J Biol Inorg Chem 16, 789–798 (2011). https://doi.org/10.1007/s00775-011-0780-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0780-0

Keywords

Navigation