Skip to main content
Log in

Theoretical investigation of the first-shell mechanism of acetylene hydration catalyzed by a biomimetic tungsten complex

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The reaction mechanism of the hydration of acetylene to acetaldehyde catalyzed by [WIVO(mnt)2]2− (where mnt2− is 1,2-dicyanoethylenedithiolate) is studied using density functional theory. Both the uncatalyzed and the catalyzed reaction are considered to find out the origin of the catalysis. Three different models are investigated, in which an aquo, a hydroxo, or an oxo coordinates to the tungsten center. A first-shell mechanism is suggested, similarly to recent calculations on tungsten-dependent acetylene hydratase. The acetylene substrate first coordinates to the tungsten center in an η2 fashion. Then, the tungsten-bound hydroxide activates a water molecule to perform a nucleophilic attack on the acetylene, resulting in the formation of a vinyl anion and a tungsten-bound water molecule. This is followed by proton transfer from the tungsten-bound water molecule to the newly formed vinyl anion intermediate. Tungsten is directly involved in the reaction by binding and activating acetylene and providing electrostatic stabilization to the transition states and intermediates. Three other mechanisms are also considered, but the associated energetic barriers were found to be very high, ruling out those possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rosner BM, Schink B (1995) J Bacteriol 177:5767–5772

    PubMed  CAS  Google Scholar 

  2. Schink B (1985) Arch Microbiol 142:295–301

    Article  CAS  Google Scholar 

  3. Einsle O, Niessen H, Abt DJ, Seiffert G, Schink B, Huber R, Messerschmidt A, Kroneck PMH (2005) Acta Crystallogr F 61:299–301

    Article  Google Scholar 

  4. Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PMH, Einsle O (2007) Proc Natl Acad Sci USA 104:3073–3077

    Article  PubMed  CAS  Google Scholar 

  5. Antony S, Bayse CA (2009) Organometallics 28:4938–4944

    Article  CAS  Google Scholar 

  6. Vincent MA, Hillier IH, Periyasamy G, Burton NA (2010) Dalton Trans 39:3816–3822

    Article  PubMed  CAS  Google Scholar 

  7. Liao RZ, Yu JG, Himo F (2010) Proc Natl Acad Sci USA 107:22523–22527

    Article  PubMed  CAS  Google Scholar 

  8. Gavrilova AL, Bosnich B (2004) Chem Rev 104:349

    Article  PubMed  CAS  Google Scholar 

  9. Das SK, Biswas D, Maiti R, Sarkar S (1996) J Am Chem Soc 118:1387–1397

    Article  CAS  Google Scholar 

  10. Sugimoto H, Tsukube H (2008) Chem Soc Rev 37:2609–2619

    Article  PubMed  CAS  Google Scholar 

  11. Das SK, Biswas D, Chaudhury PK, Sarkar S (1994) J Am Chem Soc 116:9061

    Article  CAS  Google Scholar 

  12. Ueyama N, Oku H, Nakamura A (1992) J Am Chem Soc 114:7310–7311

    Article  CAS  Google Scholar 

  13. Yadav J, Das SK, Sarkar S (1997) J Am Chem Soc 119:4315–4316

    Article  CAS  Google Scholar 

  14. Frisch MJ et al (2003) Gaussian 03, revision D.01. Gaussian, Pittsburgh

    Google Scholar 

  15. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  16. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  17. Ghosh P, Bill E, Weyhermuller T, Neese F, Wieghardt K (2003) J Am Chem Soc 125:1293

    Article  PubMed  CAS  Google Scholar 

  18. Siegbahn PEM (2003) Q Rev Biophys 36:91–145

    Article  PubMed  CAS  Google Scholar 

  19. Noodleman L, Lovell T, Han WG, Li J, Himo F (2004) Chem Rev 104:459–508

    Article  PubMed  CAS  Google Scholar 

  20. Neese F (2003) Curr Opin Chem Biol 7:125

    Article  PubMed  CAS  Google Scholar 

  21. Borowski T, Bassan A, Siegbahn PEM (2004) Inorg Chem 43:3277–3291

    Article  PubMed  CAS  Google Scholar 

  22. Bassan A, Blomberg MRA, Siegbahn PEM, Que L Jr (2005) Angew Chem Int Ed 44:2939–2941

    Article  CAS  Google Scholar 

  23. Lundberg M, Siegbahn PEM (2005) J Comput Chem 26:661–667

    Article  PubMed  CAS  Google Scholar 

  24. Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H (1993) Mol Phys 80:1431

    Article  CAS  Google Scholar 

  25. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  26. Cammi R, Mennucci B, Tomasi J (1999) J Phys Chem A 103:9100

    Article  CAS  Google Scholar 

  27. Klamt A, Schmmrmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Google Scholar 

  28. Tomasi J, Mennucci B, Cammi (2005) Chem Rev 105:2999–3094

    Google Scholar 

  29. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  30. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  31. Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:2715–2719

    Article  CAS  Google Scholar 

  32. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  33. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  PubMed  CAS  Google Scholar 

  34. Frisch MJ et al (2009) Gaussian 09, revision A.02, Gaussian, Wallingford

  35. Liao RZ, Ding WJ, Yu JG, Fang WH, Liu RZ (2007) J Phys Chem A 111:3184–3190

    Article  PubMed  CAS  Google Scholar 

  36. Guo JX, Ho JJ (1999) J Phys Chem A 103:6433–6441

    Article  CAS  Google Scholar 

  37. Kim Y, Lim S, Kim HJ, Kim Y (1999) J Phys Chem A 103:617–624

    Article  CAS  Google Scholar 

  38. Sun Y, Li H, Liang WC, Han SJ (2005) J Phys Chem B 109:5919–5926

    Article  PubMed  CAS  Google Scholar 

  39. Hu XB, Li HR, Liang WC, Han SJ (2004) J Phys Chem B 108:12999–13007

    Article  CAS  Google Scholar 

  40. Li QS, Fang WH, Yu JG (2005) J Phys Chem A 109:3983–3990

    Article  PubMed  CAS  Google Scholar 

  41. Xue Y, Kim CK, Guo Y, Xie DQ, Yan GS (2005) J Comput Chem 26:994–1005

    Article  PubMed  CAS  Google Scholar 

  42. Sun XM, Wei XG, Wu XP, Ren Y, Wong NB, Li WK (2010) J Phys Chem A 114:595–602

    Article  PubMed  CAS  Google Scholar 

  43. Jaramillo P, Coutinho K, Canuto S (2009) J Phys Chem A 113:12485–12495

    Article  PubMed  CAS  Google Scholar 

  44. Catak S, Monard G, Aviyente V, Ruiz-López MF (2009) J Phys Chem A 113:1111–1120

    Article  PubMed  CAS  Google Scholar 

  45. Nguyen MT, Matus MH, Jackson VE, Ngan VT, Rustad JR, Dixon DA (2008) J Phys Chem A 112:10386–10398

    Article  PubMed  CAS  Google Scholar 

  46. Erdtman E, Eriksson LA (2008) J Phys Chem A 112:4367–4374

    Article  PubMed  CAS  Google Scholar 

  47. Lima MCP, Coutinho K, Canuto S, Rocha WR (2006) J Phys Chem A 110:7253–7261

    Article  PubMed  CAS  Google Scholar 

  48. Chen HT, Chang JG, Chen HL (2008) J Phys Chem A 112:8093–8099

    Article  PubMed  CAS  Google Scholar 

  49. Liao RZ, Yu JG, Raushel FM, Himo F (2008) Chem Eur J 14:4287–4292

    Article  CAS  Google Scholar 

  50. Liao RZ, Himo F, Yu JG, Liu RZ (2010) J Inorg Biochem 104:37–46

    Article  PubMed  CAS  Google Scholar 

  51. Leopoldini M, Toscano M, Russo N (2007) J Am Chem Soc 129:7776–7784

    Article  PubMed  CAS  Google Scholar 

  52. Szaleniec M, Borowski T, Schühle K, Witko M, Heider J (2010) Am Chem Soc 132:6014–6024

    Article  CAS  Google Scholar 

  53. Metz S, Wang DQ, Thiel W (2009) J Am Chem Soc 131:628–4640

    Google Scholar 

  54. Metz S, Thiel W (2005) J Am Chem Soc 131:14885–14902

    Article  Google Scholar 

  55. Yang L, Liao RZ, Yu JG, Liu RZ (2009) J Phys Chem B 113:6505–6510

    Article  PubMed  CAS  Google Scholar 

  56. Prabhakar R, Morokuma K, Musaev DG (2006) J Comput Chem 27:438–1445

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Margareta Blomberg (Stockholm University) for her critical comments on this manuscript. We appreciate Sven de Marothy (Stockholm University) providing the XYZ viewer which helped us to create all the figures of the molecule models. This work was supported by grants from the National Natural Science Foundation of China (grants 20573011, 20733002, and 20873008) and Major State Basic Research Development Programs (grant 2004CB719903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 563 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YF., Liao, RZ., Ding, WJ. et al. Theoretical investigation of the first-shell mechanism of acetylene hydration catalyzed by a biomimetic tungsten complex. J Biol Inorg Chem 16, 745–752 (2011). https://doi.org/10.1007/s00775-011-0775-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0775-x

Keywords

Navigation