Skip to main content
Log in

Lanthanum chloride suppresses oxysterol-induced ECV-304 cell apoptosis via inhibition of intracellular Ca2+ concentration elevation, oxidative stress, and activation of ERK and NF-κB signaling pathways

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Experimental studies have demonstrated that oral administration of lanthanum chloride (LaCl3) inhibits the development of atherosclerosis, but the related mechanism has not been fully elucidated. Oxysterols are toxic to the vascular endothelial cells which are important in preventing the formation and progression of atheromatous plaque. In this study, we examined the effect of LaCl3 on oxysterol cholestane-3β,5α,6β-triol (Triol)-induced apoptosis and the related mechanisms in ECV-304 cells, a presumptive endothelial cell line. Incubation with Triol resulted in apoptosis of ECV-304 cells, as determined by Hoechst 33342 staining, fluorescein isothiocyanate labeled annexin V/propidium iodide double staining, and the loss of mitochondrial membrane potential. Triol activated extracellular-signal-regulated kinase (ERK) and nuclear factor κB (NF-κB), and inhibition of Triol-activated ERK and NF-κB signaling by specific inhibitors attenuated apoptosis induction by Triol in ECV-304 cells. Pretreatment with LaCl3 (1 μM) for 12 h before exposure to Triol decreased Triol-mediated apoptosis as well as activation of ERK and NF-κB. In addition, Triol induced oxidative stress in ECV-304 cells, manifested by the increase of intracellular reactive oxygen species generation and malondialdehyde level, and the reduction of the content of total protein thiols and the activity of antioxidant glutathione peroxidases; LaCl3 pretreatment significantly reversed these effects. Finally, LaCl3 pretreatment significantly inhibited the increases of intracellular Ca2+ concentration induced by Triol. Our study suggests that Triol induced ECV-304 cell apoptosis, and LaCl3 could suppress this effect probably by inhibiting intracellular Ca2+ concentration elevation, oxidative stress, as well as activation of ERK and NF-κB signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CAPE:

Caffeic acid phenethyl ester

2,7-DCFH-DA:

2,7-Dichlorofluorescein diacetate

DMEM:

Dulbecco’s modified Eagle’s medium

DTNB:

Dithiobis(2-nitrobenzoic acid)

DTT:

Dithiothreitol

ECL:

Enhanced chemiluminescence

ERK:

Extracellular-signal-regulated kinase

FITC:

Fluorescein isothiocyanate

GPx:

Glutathione peroxidase

GSH:

Reduced glutathione

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

MDA:

Malondialdehyde

MEK:

Mitogen-activated protein kinase kinase

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NCS:

Newborn calf serum

NF-κB:

Nuclear factor κB

oxLDL:

Oxidized low-density lipoprotein

PBS:

Phosphate-buffered saline

pERK:

Phosphorylated extracellular-signal-regulated kinase

PI:

Propidium iodide

pIκB:

Phosphorylated IκB

PMSF:

Phenylmethylsulfonyl fluoride

Rh-123:

Rhodamine 123

ROS:

Reactive oxygen species

SD:

Standard deviation

TBA:

Thiobarbituric acid

Triol:

Cholestane-3β,5α,6β-triol

References

  1. Ross R (1999) N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  2. Colles SM, Maxson JM, Carlson SG, Chisolm GM (2001) Trends Cardiovasc Med 11:131–138

    Article  PubMed  CAS  Google Scholar 

  3. Salonen JT, Nyyssonen K, Salonen R, Porkkala-Sarataho E, Tuomainen TP, Diczfalusy U, Bjorkhem I (1997) Circulation 95:840–845

    PubMed  CAS  Google Scholar 

  4. Zieden B, Kaminskas A, Kristenson M, Kucinskiene Z, Vessby B, Olsson AG, Diczfalusy U (1999) Arterioscler Thromb Vasc Biol 19:967–971

    PubMed  CAS  Google Scholar 

  5. Rimner A, Al Makdessi S, Sweidan H, Wischhusen J, Rabenstein B, Shatat K, Mayer P, Spyridopoulos I (2005) Free Radic Biol Med 38:535–544

    Article  PubMed  CAS  Google Scholar 

  6. Brown AJ, Jessup W (1999) Atherosclerosis 142:1–28

    Article  PubMed  CAS  Google Scholar 

  7. Ramasamy S, Boissonneault GA, Hennig B (1992) J Am Coll Nutr 11:532–538

    PubMed  CAS  Google Scholar 

  8. Uemura M, Manabe H, Yoshida N, Fujita N, Ochiai J, Matsumoto N, Takagi T, Naito Y, Yoshikawa T (2002) Eur J Pharmacol 456:29–37

    Article  PubMed  CAS  Google Scholar 

  9. Spyridopoulos I, Wischhusen J, Rabenstein B, Mayer P, Axel DI, Frohlich KU, Karsch KR (2001) Arterioscler Thromb Vasc Biol 21:439–444

    PubMed  CAS  Google Scholar 

  10. Nakazawa T, Xui N, Hesong Z, Kinoshita M, Chiba T, Kaneko E, Yui K, Shimokado K (2005) J Atheroscler Thromb 12:132–137

    PubMed  CAS  Google Scholar 

  11. Harada-Shiba M, Kinoshita M, Kamido H, Shimokado K (1998) J Biol Chem 273:9681–9687

    Article  PubMed  CAS  Google Scholar 

  12. Fricker SP (2006) Chem Soc Rev 35:524–533

    Article  PubMed  CAS  Google Scholar 

  13. Thompson KH, Orvig C (2006) Chem Soc Rev 35:499

    Article  PubMed  CAS  Google Scholar 

  14. Kramsch DM, Chan CT (1978) Circ Res 42:562–571

    PubMed  CAS  Google Scholar 

  15. Kramsch DM, Aspen AJ, Apstein CS (1980) J Clin Invest 65:967–981

    Article  PubMed  CAS  Google Scholar 

  16. Kramsch DM, Aspen AJ, Rozler LJ (1981) Science 213:1511–1512

    Article  PubMed  CAS  Google Scholar 

  17. Gillies PJ, Robinson CS, Cockrell BY, Graepel GJ (1989) Arteriosclerosis 9:253–260

    PubMed  CAS  Google Scholar 

  18. Liu H, Lan H, Wang H, Wang K, Xu S, Chang S (2004) Prog Nat Sci 14:397–403

    Google Scholar 

  19. Denizot F, Lang R (1986) J Immunol Methods 89:271–277

    Article  PubMed  CAS  Google Scholar 

  20. Murugavel P, Pari L, Sitasawad SL, Kumar S (2007) Int J Biochem Cell Biol 39:161–170

    Article  PubMed  CAS  Google Scholar 

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  22. Liu H, Yuan L, Xu S, Zhang T, Wang K (2004) Life Sci 76:533–543

    Article  PubMed  CAS  Google Scholar 

  23. Ohkawa H, Ohishi N, Yagi K (1979) Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  24. Ellman GL (1959) Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  25. Wu Q, Huang K (2006) Biochim Biophys Acta 1761:350–359

    PubMed  CAS  Google Scholar 

  26. Seo SR, Chong SA, Lee SI, Sung JY, Ahn YS, Chung KC, Seo JT (2001) J Neurochem 78:600–610

    Article  PubMed  CAS  Google Scholar 

  27. Canals S, Casarejos MJ, de Bernardo S, Solano RM, Mena MA (2003) Mol Cell Neurosci 24:1012–1026

    Article  PubMed  CAS  Google Scholar 

  28. Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, Kress G, Reynolds I, Klann E, Angiolieri MR, Johnson JW, DeFranco DB (2000) J Biol Chem 275:12200–12206

    Article  PubMed  CAS  Google Scholar 

  29. Noshita N, Sugawara T, Hayashi T, Lewen A, Omar G, Chan PH (2002) J Neurosci 22:7923–7930

    PubMed  CAS  Google Scholar 

  30. Kabe Y, Ando K, Hirao S, Yoshida M, Handa H (2005) Antioxid Redox Signal 7:395–403

    Article  PubMed  CAS  Google Scholar 

  31. Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulsky MI (2000) Proc Natl Acad Sci USA 97:9052–9057

    Article  PubMed  CAS  Google Scholar 

  32. Li D, Saldeen T, Mehta JL (1999) Biochem Biophys Res Commun 259:157–161

    Article  PubMed  CAS  Google Scholar 

  33. Li D, Saldeen T, Mehta JL (2000) J Cardiovasc Pharmacol 36:297–301

    Article  PubMed  Google Scholar 

  34. Palozza P, Simone R, Catalano A, Boninsegna A, Bohm V, Frohlich K, Mele MC, Monego G, Ranelletti FO (2010) J Nutr Biochem 21:34–46

    Article  PubMed  CAS  Google Scholar 

  35. Liu H, Wang T, Huang K (2009) Chem Biol Interact 179:81–87

    Article  PubMed  CAS  Google Scholar 

  36. Tang R, Liu H, Wang T, Huang K (2005) Arch Biochem Biophys 441:16–24

    Article  PubMed  CAS  Google Scholar 

  37. Panini SR, Sinensky MS (2001) Curr Opin Lipidol 12:529–533

    Article  PubMed  CAS  Google Scholar 

  38. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Science 270:1326–1331

    Article  PubMed  CAS  Google Scholar 

  39. Leonarduzzi G, Vizio B, Sottero B, Verde V, Gamba P, Mascia C, Chiarpotto E, Poli G, Biasi F (2006) Antioxid Redox Signal 8:375–380

    Article  PubMed  CAS  Google Scholar 

  40. Pedruzzi E, Guichard C, Ollivier V, Driss F, Fay M, Prunet C, Marie JC, Pouzet C, Samadi M, Elbim C, O’Dowd Y, Bens M, Vandewalle A, Gougerot-Pocidalo MA, Lizard G, Ogier-Denis E (2004) Mol Cell Biol 24:10703–10717

    Article  PubMed  CAS  Google Scholar 

  41. Hajnoczky G, Davies E, Madesh M (2003) Biochem Biophys Res Commun 304:445–454

    Article  PubMed  CAS  Google Scholar 

  42. Liu H, Yuan L, Xu S, Wang K, Zhang T (2005) J Cell Biochem 96:198–208

    Article  PubMed  CAS  Google Scholar 

  43. Galan C, Jardin I, Dionisio N, Salido G, Rosado JA (2010) Molecules 15:7167–7187

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos. 20637010 and 30700136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Zhang, C. & Huang, K. Lanthanum chloride suppresses oxysterol-induced ECV-304 cell apoptosis via inhibition of intracellular Ca2+ concentration elevation, oxidative stress, and activation of ERK and NF-κB signaling pathways. J Biol Inorg Chem 16, 671–681 (2011). https://doi.org/10.1007/s00775-011-0766-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0766-y

Keywords

Navigation