Fabrication and growth mechanism of ZnO nanostructures and their cytotoxic effect on human brain tumor U87, cervical cancer HeLa, and normal HEK cells


ZnO nanostructures of diverse shape were grown via a solution process with different precursors and conditions. Morphological investigation of the nanostructures was carried out using field emission scanning electron microscopy and transmission microscopy observations and revealed that the nanostructures exhibit a wurtzite phase with an ideal lattice fringe distance of approximately 0.52 nm. The powder crystallinity was examined via X-ray diffraction spectroscopy. Screening results from anticancer studies of the effects on human brain tumor U87, cervical cancer HeLa, and normal HEK cells of ZnO nanostructures of diverse shape were obtained and indicate promising activity that varies with changes in the structure and the size of the particles. Treatment-induced cell death [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and survival assay], growth inhibition, cytogenetic damage (formation of micronuclei), and apoptosis were studied as parameters for the cellular response. Treatment with nanostructures enhanced growth inhibition and cell death in a concentration-dependent manner in both U87 and HeLa cell lines. At higher concentrations (above 15.6 μg/ml) the cytotoxic effects of the nanoparticles were highly synergistic and mainly mediated through apoptosis, implying the possible interactions of lesions caused by the agents. The enhanced cell death due to nanoparticles was accompanied by a significant increase (2–3 fold at 31.25 μg/ml) in the formation of micronuclei in U87 cells. The increase in the formation of micronuclei observed after treatment indicates that these structures may interfere with the rejoining of DNA strand breaks. Among all the nanostructures, nanoparticles and sheets exhibited potent activity against both HeLa and U87 cells. However, despite potent in vitro activity, all nanostructures exhibited diminished cytotoxicity against normal human HEK cells at all effective concentrations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ et al (2005) Quantum dots for live cells, in vivo imaging and diagnostic. Science 307:538–544

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Rhyner MN, Smith AM, Gao X, Mao H, Yang L, Nie S (2006) Quantum dots and multi functional nanoparticles: new contrast agents for tumor imaging. Nanomedicine 1:209–217

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Laval JM, Mazeran PE, Thomas D (1999) Nanobiotechnology and its role in the develop ment of new analytical devices. Analyst 125:29–33

    Article  Google Scholar 

  5. 5.

    Desai TA (2001) Micro- and nanoscale structures for tissue engineering construct. Med Eng Phys 22(9):595–606

    Article  Google Scholar 

  6. 6.

    Bauer LA, Birenbaum NS, Meyer GJ (2004) Biological applications of high aspect ratio nanoparticles. J Mater Chem 14:517–526

    Article  CAS  Google Scholar 

  7. 7.

    Mazzola L (2003) Commercializing nanotechnology. Nat Biotechnol 21:1137–1143

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Grzelczac M, Juste JP, Mulvaney P, Marzan LML (2008) Shape control in gold nano particle synthesis. Chem Soc Rev 37:1783–1791

    Article  Google Scholar 

  9. 9.

    Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery application. Adv Drug Deliv Rev 60:1307–1315

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Fortin JP, Wilhelm C, Servais J, Menager C, Bacri JC, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Lim YT, Cho MY, Choi BS, Lee JM, Chung BH (2008) Paramagnetic gold nano structures for dual modal bioimaging and phototherapy of cancer cells. Chem Commun 4930–4932

  12. 12.

    Xu CJ, Wang BD, Sun SH (2009) Dumbbell-like Au–Fe3O4 nanoparticles for target specific platin delivery. J Am Chem Soc 131:4216–4217

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AH (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Chen Y, Bangall DM, Koh HJ, Park KT, Hiraga K, Zhu Z, Yao T (1998) Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization. J Appl Phys 84:3912–3918

    Article  CAS  Google Scholar 

  15. 15.

    Jin BJ, Bae SH, Lee SY, Im S (2000) Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition. Mater Sci Eng B 71:301–305

    Article  Google Scholar 

  16. 16.

    Chung SW, Yu JY, Health JR (2000) Silicon nanowire devices. Appl Phys Lett 76:2068–2070

    Article  CAS  Google Scholar 

  17. 17.

    Lieri GS, Groppelli S, Nelli P, Tintinelli A, Giunta G (1995) A novel method for the preparation of NH3 sensors based on ZnO-In thin films. Sens Actuators B 25:588–590

    Article  Google Scholar 

  18. 18.

    Wang ZL (2004) Nanostructure of ZnO. Mater Today 7:26–33

    Article  CAS  Google Scholar 

  19. 19.

    Das NC, Upreti S, Sokol PE (2010) Small angle neutron scattering and photoluminescence property of wet chemistry process synthesised ZnO nanoparticles. J Exp Nanosci 5:180–187

    Article  CAS  Google Scholar 

  20. 20.

    Pan WZ, Dai RZ, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Lao JY, Huang JY, Wang DZ, Ren ZF (2003) ZnO nanobridges and nano nails. Nano Lett 3(2):235–238

    Article  CAS  Google Scholar 

  22. 22.

    Xing YJ, Xi ZH, Xue ZQ, Zhang XD, Song JH, Wang RM, Xu J, Song Y, Zhang L, Yu DP (2003) Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl Phys Lett 83:1689–1691

    Article  CAS  Google Scholar 

  23. 23.

    Hu JQ, Bando Y (2003) Growth and optical properties of single-crystal tubular ZnO whiskers. Appl Phys Lett 82:1401–1403

    Article  CAS  Google Scholar 

  24. 24.

    Zahang H, Yang D, Li D, Ma X, Li S, Que D (2005) Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process. J Cryst Growth Des 5:547–550

    Article  Google Scholar 

  25. 25.

    Ostrovsky S, Kazimirsky G, Gedanken A, Brodie C (2009) Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res 2:882–890

    Article  CAS  Google Scholar 

  26. 26.

    Mosmann T (1883) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  27. 27.

    Singh AP, Kaushik NK, Verma AK, Hundal G, Gupta R (2009) Synthesis, structure and biological activity of copper(II) complexes of 4-(2-pyridylmethyl)-1,7-dimethyl-1,4,7-triazonane-2,6-dione and 4-(2-pyridylethyl)-1,7-dimethyl-1,4,7-triazonane-2,6-dione. Eur J Med Chem 44:1607–1614

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Singh S, Dwarakanath BS, Mathew TL (2004) DNA ligand Hoechst-33342 enhances UV induced cytotoxicity in humanglioma cell lines. J Photochem Photobiol B 77:45–54

    PubMed  CAS  Google Scholar 

  29. 29.

    Countryman PI, Heddle JA (1976) The production of micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes. Mutat Res 41:321–332

    PubMed  CAS  Google Scholar 

  30. 30.

    Yanagihara K, Nii M, Nuot K, Kamiya H, Tauchi S, Seito TS (1995) Radiation-induced apoptotic cell death in human gastric epithelial tumor cells; correlation between mitotic death and apoptosis. Int J Radiat Biol 77:677–685

    Article  Google Scholar 

  31. 31.

    Wahab R, Ansari SG, Kim YS, Seo HK, Kim GS, Khang G, Shin HS (2007) Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater Res Bull 42:1640–1648

    Article  CAS  Google Scholar 

  32. 32.

    Wahab R, Ansari SG, Kim YS, Seo HK, Shin HS (2007) Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method. Appl Surf Sci 25(3):7622–7626

    Article  Google Scholar 

  33. 33.

    Wahab R, Ansari SG, Seo HK, Kim YS, Suh EK, Shin HS (2009) Low temperature synthesis and characterization of rosette like nanostructures of ZnO using solute on process. Solid State Sci 11:439–443

    Article  CAS  Google Scholar 

  34. 34.

    Wahab R, Ansari SG, Kim YS, Khang G, Shin HS (2008) Effect of hydroxylamine hydrochloride on the floral decoration of zinc oxide synthesized by solution method. Appl Surf Sci 254:2037–2042

    Article  CAS  Google Scholar 

  35. 35.

    Wahab R, Kim YS, Shin HS (2009) Synthesis, characterization and effect of pH variation on zinc oxide nanostructures. Mater Trans 8:2092–2097

    Article  Google Scholar 

  36. 36.

    Wahab R, Kim YS, Hwang IH, Shin HS (2009) A non-aqueous synthesis, characterization of zinc oxide nanoparticles and their interaction with DNA. Synth Met 159:2443–2452

    Article  CAS  Google Scholar 

  37. 37.

    Wahab R, Mishra A, Yun SI, Kim YS, Shin HS (2010) Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl Microb Biotechnol 87:1917–1925

    Article  CAS  Google Scholar 

  38. 38.

    Li WJ, Shi EW, Zhong WZ, Yin ZW (1999) Growth mechanism and growth habit of oxide crystals. J Cryst Growth 203:186–196

    Article  CAS  Google Scholar 

  39. 39.

    Gao PX, Wang ZL (2004) Substrate atomic-termination induced anisotropic growth of ZnO nanowires/nanorods by VLS process. J Phys Chem B 108:7534–7537

    Article  CAS  Google Scholar 

  40. 40.

    Gao PX, Wang ZL (2004) Nanopropeller arrays of zinc oxide. Appl Phys Lett 84:2883–2885

    Article  CAS  Google Scholar 

  41. 41.

    Gao PX, Wang ZL (2002) Self-assembled nanowire-nanoribbon junction arrays of ZnO. J Phys Chem B 106:12653–12658

    Article  CAS  Google Scholar 

  42. 42.

    Wahab R, Kim YS, Seoup K, Shin HS (2010) Fabrication and growth mechanism of hexagonal zinc oxide nanorods via solution process. J Mater Sci 45:2967–2973

    Article  CAS  Google Scholar 

Download references


Rizwan Wahab would like to acknowledge a grant from the Post Doc Program, Chonbuk National University. We would also like to thank Mr. Kang Jong-Gyun, Center for University-wide Research Facilities, Chonbuk National University, for his cooperation in TEM observations and the KBSI (Korea Basic Science Institute), Jeonju branch, for letting us use its FESEM facility.

Author information



Corresponding author

Correspondence to Young-Soon Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wahab, R., Kaushik, N.K., Verma, A.K. et al. Fabrication and growth mechanism of ZnO nanostructures and their cytotoxic effect on human brain tumor U87, cervical cancer HeLa, and normal HEK cells. J Biol Inorg Chem 16, 431–442 (2011). https://doi.org/10.1007/s00775-010-0740-0

Download citation


  • Micronuclei
  • Zinc oxide nanostructures
  • Human brain tumor
  • Cervical cancer