Abstract
Structural characterization and study of the activity of new POX1B protein from garlic which has a high peroxidase activity and can be used as a biosensor for the detection of hydrogen peroxide and phenolic compounds were performed and compared with the findings for other heme peroxidases. The structure–function relationship was investigated by analysis of the spectroscopic properties and correlated to the structure determined by a new generation of high-performance hybrid mass spectrometers. The reactivity of the enzyme was analyzed by studies of the redox activity toward various ligands and the reactivity with various substrates. We demonstrated that, in the case of garlic peroxidase, the heme group is pentacoordinated, and has an histidine as a proximal ligand. POX1B exhibited a high affinity for hydrogen peroxide as well as various reducing cosubstrates. In addition, high enzyme specificity was demonstrated. The k cat and K M values were 411 and 400 mM−1 s−1 for 3,3′,5,5′-tetramethylbenzidine and 2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), respectively. Furthermore, the reduction of nitro compounds in the presence of POX1B was demonstrated by iron(II) nitrosoalkane complex assay. In addition, POX1B showed a great potential for application for drug metabolism since its ability to react with 1-nitrohexane in the presence of sodium dithionite was demonstrated by the appearance of a characteristic Soret band at 411 nm. The high catalytic efficiency obtained in the case of the new garlic peroxidase (POX1B) is suitable for the monitoring of different analytes and biocatalysis.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Wakamatsu K, Takahama U (1993) Physiol Plant 68:167–171
Biles CL, Martyn RD (1993) Plant Physiol Biochem 31:499–506
Lin ZF, Chen LH, Zhang WQ (1996) Process Biochem 5:443–448
Krell HW (1991) In: Loburzewski J, Greppin H, Penel C, Gaspar T (eds) Biochemical, molecular and physiological aspects of plant peroxidases. University of Maria Curie-Sklodowska, Lublin, and University of Geneva, Geneva, pp 469–478
Chiou CC, Chang PY, Chan EC, Wu TL, Tsao KC, Wu JT (2003) Clin Chem Acta 334:87–94
Agostini E, Hernandez-Ruiz J, Arnao MB, Milrand SR, Tigier HA, Acosta M (2002) Biotechnol Appl Biochem 35:1–7
Ruzgas T, Csoregi E, Katakis I, Kenausis G, Gorton L (1996) J Mol Recognit 9:480–484
Marzouki SM, Limam F, Smaali MI, Ulber R, Marzouki MN (2005) Appl Biochem Biotechnol 127:201–214
Chen S, Yuan R, Chai Y, Yin B, Li W, Min L (2009) Electrochem Acta 54(11):3039–3046
Fawer MS, Stierli J, Cliffe S, Fiechter A (1991) Biochim Biophys Acta 1076:15–22
Nicolis S, Casella L, Roncone R, Dallacosta C, Monzani E (2007) C R Chim 10:380–391
Poulos TL, Freer BT, Alden RA, Edwards SL, Skoglund U, Takio K, Eriksson B, Xuong N, Yonetani Y, Kraut J (1980) J Biol Chem 255:575–580
Poulos TL, Edwards SL, Wariishi H, Gold MH (1993) J Biol Chem 268:4429–4440
Patterson WR, Poulos TL, Goodin DB (1995) Biochemistry 34:4342–4345
Schuller DJ, Ban N, van Huystee RB, McPherson A, Poulos TL (1996) Structure 4:311–321
Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL (1997) Nat Struct Biol 4:1032–1038
Welinder KG (1992) Curr Opin Struct Biol 2:388–393
Poulos TL (1996) J Biol Inorg Chem 1:356–359
Jensen KP, Ryde U (2003) Mol Phys 13:2003–2018
Veitch NC (1993) NMR studies of peroxidases. Thesis, Oxford University
Hatefi Y (1985) Annu Rev Biochem 54:1015–1069
Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bello B, Semigran MJ, Bielsa-Masdeu A, Dec GW, Israels S, Ballester M, Virmani R, Saxena S, Kharbanda S (1999) Proc Natl Acad Sci USA 96:8144–8149
Yoshikawa S (2002) Adv Protein Chem 60:341–342
Dunford HB (1999) Heme peroxidases. Wiley-VCH, New York
Ayala M, Roman R, Vazquez-Duhalt R (2007) Biochem Biophys Res Commun 357:804–808
Chuang W-J, Chang Y-D, Jeng W-Y (1999) J Inorg Biochem 75:93–97
Adams PE (1991) In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology, vol 2. CRC Press, Boca Raton
Louro RO, Correia IJ, Brennan L, Coutinho IB, Xavier AV, Turner DL (1998) J Am Chem Soc 120:13240
Walker FA (2004) Chem Rev 104:589–615
Momenteau M (1986) Pure Appl Chem 58(11):1493–1502
Buffard D, Breda C, van Huystee RB, Asemota O, Pierre M, Dang HDB, Esnault R (1990) Proc Natl Acad Sci USA 87:8874–8878
Loew GH, Harris DL (2000) Chem Rev 100:407–419
de Visser SP (2006) J Biol Inorg Chem 11:168–178
Rath SP, Olmstead MM, Balch AL (2004) J Am Chem Soc 126:6379–6386
Erman JE, Vitello LB, Miller MA, Shaw A, Brown AK, Kraut J (1993) Biochemistry 32(37):9798–9806
Newmyer SL, de Montellano PRO (1995) J Biol Chem 270:19430–19438
Tanaka M, Nagano S, Ishimori K, Morishima I (1997) Biochemistry 36:9791–9798
Howes BD, Schiødt CB, Welinder KG, Marzocchi MP, Ma J-G, Zhang J, Shelnutt JA, Smulevich G (1999) Biophys J 77:478–492
Ricoux R, Boucher J-L, Mansuy D, Mahy J-P (2000) Biochem Biophys Res Commun 278:217–223
Porter DJT, Bright HJ (1983) J Biol Chem 258(16):9913–9924
Mansuy D, Beaune P, Cresteil T, Bacot C, Chottard JC, Gans P (1978) Eur J Biochem 86:573–579
Mansuy D, Chottard JC, Chottard G (1977) Eur J Biochem 76:617–623
Mahy JP, Mansuy D (1991) Biochemistry 30:4165–4172
Lee J, Chen L, West AH, Richter-Addo GB (2002) Chem Rev 102:1019–1065
Mansuy D, Battioni P, Chottard J-C, Riche C, Chiaroni A (1983) J Am Chem Soc 105:455–463
Bensoussan C, Delaforge M, Mansuy D (1995) Biochem Pharmacol 49(5):591–602
Kajita J, Inano K, Fuse E, Kuwabara T, Kobayashi H (2002) Drug Metab Dispos 30(12):1504–1511
El Ichi S, Abdelghani A, Hadji I, Helali S, Limam F, Marzouki MN (2008) Biotechnol Appl Biochem 51:33–41
El Ichi S, Limam F, Marzouki MN (2009) Mater Sci Eng C 29(5):1662–1667
El Ichi S, Marzouki MN, Korri-Youssoufi H (2009) Biosens Bioelectron 24(10):3084–3090
Bradford M (1976) Anal Biochem 72:248–254
Rudrappa T, Neelwarne B, Kumar V, Lakshmanan V, Venkataramareddy SR, Aswathanarayana RG (2005) Electron J Biotechnol 8(2):185–196
Laemmli UK (1970) Nature 227:680–685
Hoopes JT, Dean JFD (2001) Anal Biochem 293:96–101
Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) Plant Cell Physiol 42:462–468
Paul K-G, Stigbrand T (1970) Acta Chem Scand 24:3607–3617
Pahari D, Patel AB, Behere DV (1995) J Inorg Biochem 60:245–255
Gazaryan IG, Lagrimini LM (1995) Phytochemistry 41(4):1029–1034
Wariishi H, Akileswaran L, Gold M (1988) Biochemistry 27:5365–5370
Gaspard S, Chottard G, Mahy J-P, Mansuy D (1996) Eur J Biochem 238:529–537
Ricoux R, Sauriat-Dorizon H, Girgenti E, Blanchard D, Mahy J-P (2002) J Immunol Methods 269:39–57
Song H-Y, Liu J-Z, Weng L-P, Ji L-N (2009) J Mol Catal B Enzym 57:48–54
Brault D, Rougee M (1974) Biochem Biophys Res Commun 3:654–659
Flocco CG, Alvarez MA, Giulietti AM (1998) Biotechnol Appl Biochem 28:33–38
Roepstorff P, Fohlmann J (1984) Biomed Mass Spectrom 11:601
Welinder KG, Mazza G (1977) Eur J Biochem 73:353–358
Heering HA, Jansen MAK, Thorneley RNF, Smulevich G (2001) Biochemistry 40:10360–10370
De Lauzon S, Mansuy D, Mahy J-P (2002) Eur J Biochem 269:470–480
Ricoux R, Korri-Youssoufi H, Mahy J-P (2005) J Biol Sci 5(1):44–49
Das A, Hecht MH (2007) J Inorg Biochem 101:1820–1826
Dasgupta S, Rousseau DL, Anni H, Yonetani T (1989) J Biol Chem 264:654–662
Uno T, Nishimura Y, Tsuboi M, Makino R, Iizuka T, Ishimurali Y (1987) J Biol Chem 262(10):4549–4556
Sun J, Fitzgerald MM, Goodin DB, Loehr TM (1997) J Am Chem Soc 119:2064–2065
Das TK, Franzen S, Pond A, Dawson JH, Rousseau DL (1999) Inorg Chem 38:1952–1953
Sono M, Dawson JH, Hall K, Hager LP (1986) Biochemistry 25:347–356
Mcree DE, Jensen GM, Fitzgerald MM, Siegel HA, Goodin DB (1994) Proc Natl Acad Sci USA 91:12847–12851
Newmeyer SL, de Montellano PRO (1996) J Biol Chem 271(25):14891–14896
Roncone R, Monzani E, Murtas M, Battaini G, Pennati A, Sanangelantoni AM, Zuccotti S, Bolognesi M, Casella L (2004) Biochem J 377:717–724
Newmyer SL, Sun J, Loehr TM, de Montellano PRO (1996) Biochemistry 35:12788–12795
Tezcan FA, Winkler JR, Gray HBJ (1998) Am Chem Soc 120:1338
Willner I, Heleg-Shabtai V, Katz E, Rau HK, Haehnel W (1999) J Am Chem Soc 121:6455–6468
Das A, Trammell SA, Hecht MH (2006) Biophys Chem 123:102–112
Poulos TL, Kraut J (1980) J Biol Chem 255:8199–8205
Smith AT, Sanders SA, Thorneley RNF, Burke JF, Bray RC (1992) Eur J Biochem 207:507–519
Kamal JKA, Behere DV (2003) J Inorg Chem 94:236–242
Smith AT, Veith NC (1998) Curr Opin Chem Biol 2:269–278
Tanaka M, Morimoto A, Ishimori K, Morishima I (1998) Pure Appl Chem 70(4):911–916
Rodriguez-Lopez JN, Smith AT, Thorneley RNF (1996) J Biol Inorg Chem 1:136–142
Mika A, Lüthje S (2003) Plant Physiol 132:1489–1498
Gil-Rodríguez P, Ferreira-Batista C, Vázquez-Duhalt R, Valderrama B (2008) Eng Life Sci 8(3):286–296
Pessayre D, Larrey D, Funck-Brentano C, Benhamou JP (1985) J Antimicrob Chemother 16:181–194
Benedetti MS, Tipton KF, Whomsley R (2007) Fundam Clin Pharmacol 21:467–480
Acknowledgments
This work was supported by a cooperation project between the CNRS (France) and DGRSRT (Tunisia). Financial support from the Tunisian Ministry of High Education, Scientific Research and Technology and Paris-Sud 11 University is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
El Ichi, S., Miodek, A., Sauriat-Dorizon, H. et al. Characterization of structure and activity of garlic peroxidase (POX1B). J Biol Inorg Chem 16, 157–172 (2011). https://doi.org/10.1007/s00775-010-0714-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00775-010-0714-2


