Skip to main content
Log in

Crystal structure of the zinc-, cobalt-, and iron-containing adenylate kinase from Desulfovibrio gigas: a novel metal-containing adenylate kinase from Gram-negative bacteria

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Adenylate kinases (AK) from Gram-negative bacteria are generally devoid of metal ions in their LID domain. However, three metal ions, zinc, cobalt, and iron, have been found in AK from Gram-negative bacteria. Crystal structures of substrate-free AK from Desulfovibrio gigas with three different metal ions (Zn2+, Zn-AK; Co2+, Co-AK; and Fe2+, Fe-AK) bound in its LID domain have been determined by X-ray crystallography to resolutions 1.8, 2.0, and 3.0 Å, respectively. The zinc and iron forms of the enzyme were crystallized in space group I222, whereas the cobalt-form crystals were C2. The presence of the metals was confirmed by calculation of anomalous difference maps and by X-ray fluorescence scans. The work presented here is the first report of a structure of a metal-containing AK from a Gram-negative bacterium. The native enzyme was crystallized, and only zinc was detected in the LID domain. Co-AK and Fe-AK were obtained by overexpressing the protein in Escherichia coli. Zn-AK and Fe-AK crystallized as monomers in the asymmetric unit, whereas Co-AK crystallized as a dimer. Nevertheless, all three crystal structures are very similar to each other, with the same LID domain topology, the only change being the presence of the different metal atoms. In the absence of any substrate, the LID domain of all holoforms of AK was present in a fully open conformational state. Normal mode analysis was performed to predict fluctuations of the LID domain along the catalytic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AK:

Adenylate kinase

AK2:

Adenylate kinase isoform 2

Co-AK:

Co2+ form of adenylate kinase

Fe-AK:

Fe2+ form of adenylate kinase

NMA:

Normal mode analysis

PDB:

Protein Data Bank

Zn-AK:

Zn2+ form of adenylate kinase

References

  1. Brune M, Schumann R, Wittinghofer F (1985) Nucleic Acids Res 13:7139–7151

    Article  CAS  PubMed  Google Scholar 

  2. Noda LH (1973) In: Boyer PD (ed) The enzymes, vol 8, part A. Academic Press, Orlando, pp 279–305

  3. Müller CW, Schulz GE (1992) J Mol Biol 224:159–177

    Article  PubMed  Google Scholar 

  4. Berry MB, Phillips GN Jr (1998) Proteins Struct Funct Genet 32:276–288

    Article  CAS  PubMed  Google Scholar 

  5. Schulz GE (1992) Curr Opin Struct Biol 2:61–67

    Article  Google Scholar 

  6. Yan H, Tsai MD (1999) Adv Enzymol Relat Areas Mol Biol 73:103–134

    Article  CAS  PubMed  Google Scholar 

  7. Bae E, Phillips GN Jr (2005) J Biol Chem 280:30943–30948

    Article  CAS  PubMed  Google Scholar 

  8. Vonrhein C, Bönisch H, Schäfer G, Schulz GE (1998) J Mol Biol 282:167–179

    Article  CAS  PubMed  Google Scholar 

  9. Davlieva M, Shamoo Y (2009) Proteins Struct Funct Genet 78:357–364

    Article  Google Scholar 

  10. Perrier V, Burlacu-Miron S, Boussac A, Meier A, Gilles A (1998) Protein Eng 11:917–923

    Article  CAS  PubMed  Google Scholar 

  11. Wild K, Grafmüller R, Wagner E, Schulz GE (1997) Eur J Biochem 250:326–331

    Article  CAS  PubMed  Google Scholar 

  12. Gavel OY, Bursakov SA, Rocco GD, Trincão J, Pickering IJ, George GN, Calvete JJ, Shnyrov VL, Brondino CD, Pereira AS, Lampreia J, Tavares P, Moura JJG, Moura I (2008) J Inorg Biochem 102:1380–1395

    Article  CAS  PubMed  Google Scholar 

  13. Schlauderer GJ, Schulz GE (1996) Protein Sci 5:434–441

    Article  CAS  PubMed  Google Scholar 

  14. Perrier V, Burlacu-Miron S, Bourgeois S, Surewicz WK, Gilles A-M (1998) J Biol Chem 273:19097–19101

    Article  CAS  PubMed  Google Scholar 

  15. Müller CW, Schlauderer GJ, Reinstein J, Schulz GE (1996) Structure 4:147–156

    Article  PubMed  Google Scholar 

  16. Perrier V, Surewicz WK, Glaser P, Martineau L, Craescu CT, Fabian H, Mantsch HH, Barzu O, Gilles AM (1994) Biochemistry 33:9960–9967

    Article  CAS  PubMed  Google Scholar 

  17. Vielle C, Krishnamurthy H, Hyun H-H, Savchenko A, Yan H, Zeikus G (2003) Biochem J 372:577–585

    Article  Google Scholar 

  18. Gavel OY, Bursakov SA, Pina DG, Zhadan GG, Moura JJ, Moura I, Shnyrov VL (2004) Biophys Chem 110:83–92

    Article  CAS  PubMed  Google Scholar 

  19. Glaser P, Presecan E, Delepierre M, Surewicz WK, Mantsch HH, Barzu O, Gilles A (1992) Biochemistry 31:3038–3043

    Article  CAS  PubMed  Google Scholar 

  20. Miura K, Inouye S, Sakai K, Takaoka H, Kishi F, Tabuchi M, Tanaka T, Matsumoto H, Shirai M, Nakazawa T, Nakazawa A (2001) J Biol Chem 276:13490–13498

    Article  CAS  PubMed  Google Scholar 

  21. Kladova AV, Gavel OY, Zhadan GG, Roig MG, Shnyrov VL, Bursakov SA (2009) Int J Biol Macromol 45(5):524–531

    Article  CAS  PubMed  Google Scholar 

  22. Kladova AV, Gavel OY, Boer DR, Mukhopaadhyay A, Texeira S, Shnyrov V, Moura I, Moura JJ, Romão MJ, Trincão J, Bursakov SA (2009) Acta Crystallogr F Struct Biol Crystallogr Commun 65:926–929

    Article  CAS  Google Scholar 

  23. Leslie AGW (1992) Joint CCP4 and ESF-EACBM newsletters on protein crystallography 26

  24. Kabsch W (1978) Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallogr 34:827–828

    Article  Google Scholar 

  25. Collaborative Computational Project Number 4 (1994) Acta Crystallogr D Biol Crystallogr 50:760–763

    Google Scholar 

  26. LaFortelle ED, Bricogne G (1997) In: Sweet JRM, Carter CW (eds) Methods in enzymology. Academic Press, New York, pp 472–494

  27. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) J Appl Crystallogr 40:658–674

    Article  CAS  PubMed  Google Scholar 

  28. Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D Biol Crystallogr 53:240–255

    Article  CAS  PubMed  Google Scholar 

  29. Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  30. Bellinzoni M, Haouz A, Graña M, Munier-Lehmann H, Shepard W, Alzari PM (2006) Protein Sci 15:1489–1493

    Article  CAS  PubMed  Google Scholar 

  31. Miyoshi K, Egi Y, Shioda T, Kawasaki T (1990) J Biochem 108:267–270

    CAS  PubMed  Google Scholar 

  32. Hanas JS, Larabee JL, Hocker JR (2005) Molecular biology intelligence unit. Landes Bioscience, Austin, TX, 39–46

  33. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) EMBO J 1:945–951

    CAS  PubMed  Google Scholar 

  34. Dreusicke D, Schulz GE (1986) FEBS Lett 208:301–304

    Article  CAS  PubMed  Google Scholar 

  35. Gilles AM, Saint GI, Monnot M, Fermandjian S, Michelson S, Barzu O (1986) Proc Natl Acad Sci USA 83:5798–5802

    Article  CAS  PubMed  Google Scholar 

  36. Suhre K, Sanejouand YH (2004) Acta Crystallogr D Biol Crystallogr 60:796–799

    Article  PubMed  Google Scholar 

  37. Bahar I, Rader AJ (2005) Curr Opin Struct Biol 15:586–592

    Article  CAS  PubMed  Google Scholar 

  38. Miyashita O, Onuchic JN, Wolynes PG (2003) Proc Natl Acad Sci USA 100:12570–12575

    Article  CAS  PubMed  Google Scholar 

  39. Maragakis P, Karplus M (2005) J Mol Biol 229:494–501

    Google Scholar 

  40. Lou H, Cukier RI (2006) J Phys Chem B 110:12796–12808

    Article  CAS  PubMed  Google Scholar 

  41. Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M, Hubner CG, Kern D (2007) Nature 450:838–844

    Article  CAS  PubMed  Google Scholar 

  42. Holm L, Park J (2000) Bioinformatics 16:566–567

    Article  CAS  PubMed  Google Scholar 

  43. Criswell AR, Bae E, Stec B, Konisky J, Philips GN Jr (2003) J Mol Biol 330:1087–1099

    Article  CAS  PubMed  Google Scholar 

  44. Bae E, Philips GN Jr (2004) J Biol Chem 279:28202–28208

    Article  CAS  PubMed  Google Scholar 

  45. Potterton L, McNicholas S, Krissinel E, Gruber J, Cowtan K, Emsley P, Murshudov GN, Cohen S, Perrakis A, Noble M (2004) Acta Crystallogr D Biol Crystallogr 60:2288–2294

    Article  PubMed  Google Scholar 

  46. Bond CS, Schüttelkopf AW (2009) Acta Crystallogr D Biol Crystallogr 65:510–512

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Fundação para a Ciência e a Tecnologia (FCT) project PPCDT/POCI/QUI/59119/2004 (Portugal), Acções Integradas Luso Espanholas E-62/06 (Portugal-Spain), and FCT Grants SFRH/BPD/20142/2006 (A.M.), SFRH/BD/24744/2005 (A.V.K.), and SFRH/BPD/28380/2006 (O.Yu. G). We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. J. Romão or J. Trincão.

Additional information

An Interactive 3D Complement page in Proteopedia is available at: http://proteopedia.org/wiki/index.php/Journal:JBIC:1.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, A., Kladova, A.V., Bursakov, S.A. et al. Crystal structure of the zinc-, cobalt-, and iron-containing adenylate kinase from Desulfovibrio gigas: a novel metal-containing adenylate kinase from Gram-negative bacteria. J Biol Inorg Chem 16, 51–61 (2011). https://doi.org/10.1007/s00775-010-0700-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0700-8

Keywords

Navigation