Skip to main content
Log in

Evidence that His349 acts as a pH-inducible switch to accelerate receptor-mediated iron release from the C-lobe of human transferrin

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

His349 in human transferrin (hTF) is a residue critical to transferrin receptor (TFR)-stimulated iron release from the C-lobe. To evaluate the importance of His349 on the TFR interaction, it was replaced by alanine, aspartate, lysine, leucine, tryptophan, and tyrosine in a monoferric C-lobe hTF construct (FeChTF). Using a stopped-flow spectrofluorimeter, we determined rate processes assigned to iron release and conformational events (in the presence and in the absence of the TFR). Significantly, all mutant/TFR complexes feature dampened iron release rates. The critical contribution of His349 is most convincingly revealed by analysis of the kinetics as a function of pH (5.6–6.2). The FeChTF/TFR complex titrates with a pK a of approximately 5.9. By contrast, the H349A mutant/TFR complex releases iron at higher pH with a profile that is almost the inverse of that of the control complex. At the putative endosomal pH of 5.6 (in the presence of salt and chelator), iron is released from the H349W mutant/TFR and H349Y mutant/TFR complexes with a single rate constant similar to the iron release rate constant for the control; this suggests that these substitutions bypass the required pH-induced conformational change allowing the C-lobe to directly interact with the TFR to release iron. The H349K mutant proves that although the positive charge is crucial to complete iron release, the geometry at this position is also critical. The H349D mutant shows that a negative charge precludes complete iron release at pH 5.6 both in the presence and in the absence of the TFR. Thus, histidine uniquely drives the pH-induced conformational change in the C-lobe required for TFR interaction, which in turn promotes iron release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BHK cells:

Baby hamster kidney cells

Fe2hTF:

Diferric human serum transferrin

FeChTF:

Recombinant N-terminal hexa-His-tagged nonglycosylated monoferric human serum transferrin that binds iron only in the C-lobe

hTF:

Human serum transferrin

MES:

2-Morpholinoethanesulfonic acid

NTA:

Nitrilotriacetic acid

oTF:

Ovotransferrin

sTFR:

Glycosylated, N-terminal hexa-His-tagged soluble recombinant transferrin receptor (residues 121–760)

TBE:

Tris(hydroxymethyl)aminomethane–borate–EDTA

TF:

Serum transferrin

TFR:

Transferrin receptor

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Klausner RD, Ashwell G, van Renswoude J, Harford JB, Bridges KR (1983) Proc Natl Acad Sci USA 80:2263–2266

    Article  CAS  PubMed  Google Scholar 

  2. Dautry-Varsat A, Ciechanover A, Lodish HF (1983) Proc Natl Acad Sci USA 80:2258–2262

    Article  CAS  PubMed  Google Scholar 

  3. Aisen P, Enns C, Wessling-Resnick M (2001) Int J Biochem Cell Biol 33:940–959

    Article  CAS  PubMed  Google Scholar 

  4. Zak O, Aisen P (2003) Biochemistry 42:12330–12334

    Article  CAS  PubMed  Google Scholar 

  5. Giannetti AM, Halbrooks PJ, Mason AB, Vogt TM, Enns CA, Bjorkman PJ (2005) Structure 13:1613–1623

    Article  CAS  PubMed  Google Scholar 

  6. Byrne SL, Chasteen ND, Steere AN, Mason AB (2010) J Mol Biol 396:130–140

    Article  CAS  PubMed  Google Scholar 

  7. Aisen P, Leibman A (1968) Biochem Biophys Res Commun 30:407–413

    Article  CAS  PubMed  Google Scholar 

  8. Lawrence CM, Ray S, Babyonyshev M, Galluser R, Borhani DW, Harrison SC (1999) Science 286:779–782

    Article  CAS  PubMed  Google Scholar 

  9. Giannetti AM, Snow PM, Zak O, Bjorkman PJ (2003) PLoS Biol 1:E51

    Article  PubMed  Google Scholar 

  10. Cheng Y, Zak O, Aisen P, Harrison SC, Walz T (2004) Cell 116:565–576

    Article  CAS  PubMed  Google Scholar 

  11. Mason AB, He QY, Halbrooks PJ, Everse SJ, Gumerov DR, Kaltashov IA, Smith VC, Hewitt J, MacGillivray RT (2002) Biochemistry 41:9448–9454

    Article  CAS  PubMed  Google Scholar 

  12. Byrne SL, Leverence R, Klein JS, Giannetti AM, Smith VC, MacGillivray RT, Kaltashov IA, Mason AB (2006) Biochemistry 45:6663–6673

    Article  CAS  PubMed  Google Scholar 

  13. James NG, Mason AB (2008) Anal Biochem 378:202–205

    Article  CAS  PubMed  Google Scholar 

  14. Pace CF, Vajdos F, Fee L, Grimsley G, Gray T (1995) Protein Sci 2411–2423

  15. Wetlaufer DB (1962) Adv Protein Chem 17:303–391

    Article  CAS  Google Scholar 

  16. Lehrer SS (1969) J Biol Chem 244:3613–3617

    CAS  PubMed  Google Scholar 

  17. James NG, Berger CL, Byrne SL, Smith VC, MacGillivray RT, Mason AB (2007) Biochemistry 46:10603–10611

    Article  CAS  PubMed  Google Scholar 

  18. Byrne SL, Mason AB (2009) J Biol Inorg Chem 14:771–781

    Article  CAS  PubMed  Google Scholar 

  19. James NG, Byrne SL, Mason AB (2008) Biochim Biophys Acta 1794:532–540

    PubMed  Google Scholar 

  20. Dougherty DA, Stauffer DA (1990) Science 250:1558–1560

    Article  CAS  PubMed  Google Scholar 

  21. Ma JC, Dougherty DA (1997) Chem Rev 97:1303–1324

    Google Scholar 

  22. Zacharias N, Dougherty DA (2002) Trends Pharmacol Sci 23:281–287

    Article  CAS  PubMed  Google Scholar 

  23. Williams S, Bledsoe RK, Collins JL, Boggs S, Lambert MH, Miller AB, Moore J, McKee DD, Moore L, Nichols J, Parks D, Watson M, Wisely B, Willson TM (2003) J Biol Chem 278:27138–27143

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto T, Chen HC, Guigard E, Kay CM, Ryan RO (2008) Biochemistry 47:11647–11652

    Article  CAS  PubMed  Google Scholar 

  25. Gerchman Y, Olami Y, Rimon A, Taglicht D, Schuldiner S, Padan E (1993) Proc Natl Acad Sci USA 90:1212–1216

    Article  CAS  PubMed  Google Scholar 

  26. Rotzschke O, Lau JM, Hofstatter M, Falk K, Strominger JL (2002) Proc Natl Acad Sci USA 99:16946–16950

    Article  CAS  PubMed  Google Scholar 

  27. Feliciangeli SF, Thomas L, Scott GK, Subbian E, Hung CH, Molloy SS, Jean F, Shinde U, Thomas G (2006) J Biol Chem 281:16108–16116

    Article  CAS  PubMed  Google Scholar 

  28. Sakajiri T, Yamamura T, Kikuchi T, Yajima H (2009) Protein J 28:407–414

    Article  CAS  PubMed  Google Scholar 

  29. Penhallow RC, Brown-Mason A, Woodworth RC (1986) J Cell Physiol 128:251–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the United States Public Health Services (R01 DK21739) for A.B.M.and the National Institute of General Medical Sciences (R01 GM20194) for N.D.C. Support for A.N.S. and S.L.B. came from the Hemostasis and Thrombosis Training Grant (5T32HL007594), awarded to K.G. Mann at The University of Vermont by the National Heart, Lung and Blood Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne B. Mason.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 479 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steere, A.N., Byrne, S.L., Chasteen, N.D. et al. Evidence that His349 acts as a pH-inducible switch to accelerate receptor-mediated iron release from the C-lobe of human transferrin. J Biol Inorg Chem 15, 1341–1352 (2010). https://doi.org/10.1007/s00775-010-0694-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0694-2

Keywords

Navigation