Skip to main content
Log in

Conformational and thermodynamic characterization of the premolten globule state occurring during unfolding of the molten globule state of cytochrome c

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

It has already been shown that the mutant Leu94Gly of horse cytochrome c exists in a molten globule (MG) state. We have carried out studies of reversible folding and unfolding induced by LiCl of this mutant at pH 6.0 and 25 °C by observing changes in the difference molar absorption coefficient at 402 nm, the mean residue ellipticity at 222 nm, and the difference mean residue ellipticity at 409 nm. This process is a three-state process when measured by these probes. The stable folding intermediate state has been characterized by far- and near-UV circular dichroism, tryptophan fluorescence, 8-anilino-1-naphthalenesulfonic acid binding, and dynamic light scattering measurements, which led us to conclude that the intermediate is a premolten globule (PMG). Analysis of the reversible unfolding transition curves for the stability of different states in terms of the Gibbs free energy change at pH 6.0 and 25 °C led us to conclude that the MG state is more stable than the PMG state by 5.4 ± 0.1 kcal mol−1, whereas the PMG state is more stable than the denatured (D) state by only 1.1 ± 0.1 kcal mol−1. A comparison of the conformational and thermodynamic properties of the LiCl-induced PMG state at pH 6.0 with those of the PMG state induced by NaCl at pH 2.0 suggests that a similar PMG state is obtained under both denaturing conditions. Differential scanning calorimetry measurements suggest that heat induces a reversible two-state transition between MG and D states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

ANS:

8-Anilino-1-naphthalenesulfonic acid

CD:

Circular dichroism

DLS:

Dynamic light scattering

DSC:

Differential scanning calorimetry

MG:

Molten globule

PMG:

Premolten globule

WT:

Wild type

References

  1. Arai M, Kuwajima K (2000) Adv Protein Chem 53:209–282

    Article  CAS  PubMed  Google Scholar 

  2. Udgaonkar JB (2008) Annu Rev Biophys 37:489–510

    Article  CAS  PubMed  Google Scholar 

  3. Jha SK, Udgaonkar JB (2009) Proc Natl Acad Sci USA 106:12289–12294

    Article  CAS  PubMed  Google Scholar 

  4. Ahmad Z, Ahmad F (1994) Biochim Biophys Acta 1207:223–230

    CAS  PubMed  Google Scholar 

  5. Qureshi SH, Moza B, Yadav S, Ahmad F (2003) Biochemistry 42:1684–1695

    Article  CAS  PubMed  Google Scholar 

  6. Moza B, Qureshi SH, Islam A, Singh R, Anjum F, Moosavi-Movahedi AA, Ahmad F (2006) Biochemistry 45:4695–4702

    Article  CAS  PubMed  Google Scholar 

  7. Alam Khan MK, Das U, Rahaman MH, Hassan MI, Srinivasan A, Singh TP, Ahmad F (2009) J Biol Inorg Chem 14:751–760

    Article  PubMed  Google Scholar 

  8. Uversky VN (2003) Cell Mol Life Sci 60:1852–1871

    Article  CAS  PubMed  Google Scholar 

  9. Jeng MF, Englander SW, Elove GA, Wand AJ, Roder H (1990) Biochemistry 29:10433–10437

    Article  CAS  PubMed  Google Scholar 

  10. Lala AK, Kaul P (1992) J Biol Chem 267:19914–19918

    CAS  PubMed  Google Scholar 

  11. Uversky VN (1997) Protein Peptide Lett 4:355–367

    CAS  Google Scholar 

  12. Chaffotte AF, Guijarro JI, Guillou Y, Delepierre M, Goldberg ME (1997) J Protein Chem 16:433–439

    Article  CAS  PubMed  Google Scholar 

  13. Kirkitadze MD, Condron MM, Teplow DB (2001) J Mol Biol 312:1103–1119

    Article  CAS  PubMed  Google Scholar 

  14. Uversky VN (2002) Protein Sci 11:739–756

    Article  CAS  PubMed  Google Scholar 

  15. Jeng MF, Englander SW (1991) J Mol Biol 221:1045–1061

    Article  CAS  PubMed  Google Scholar 

  16. Goto Y, Takahashi N, Fink AL (1990) Biochemistry 29:3480–3488

    Article  CAS  PubMed  Google Scholar 

  17. Margoliash E, Frohwirt N (1959) Biochem J 71:570–572

    CAS  PubMed  Google Scholar 

  18. Mulqueen PM, Kronman MJ (1982) Arch Biochem Biophys 215:28–39

    Article  CAS  PubMed  Google Scholar 

  19. Ahmad F, Bigelow CC (1982) J Biol Chem 257:12935–12938

    CAS  PubMed  Google Scholar 

  20. Latypov RF, Cheng H, Roder NA, Zhang J, Roder H (2006) J Mol Biol 357:1009–1025

    Article  CAS  PubMed  Google Scholar 

  21. Pace CN (1975) CRC Crit Rev Biochem 3:1–43

    Article  CAS  PubMed  Google Scholar 

  22. Oellerich S, Wackerbarth H, Hildebrandt P (2002) J Phys Chem B 106:6566–6580

    Article  CAS  Google Scholar 

  23. Ahmad F (1991) Indian J Biochem Biophys 28:168–173

    CAS  PubMed  Google Scholar 

  24. Santucci R, Ascoli F (1997) J Inorg Biochem 68:211–214

    Article  CAS  PubMed  Google Scholar 

  25. Hamada D, Kuroda Y, Kataoka M, Aimoto S, Yoshimura T, Goto Y (1996) J Mol Biol 256:172–186

    Article  CAS  PubMed  Google Scholar 

  26. Ohgushi M, Wada A (1983) FEBS Lett 164:21–24

    Article  CAS  PubMed  Google Scholar 

  27. Semisotnov GV, Rodionova NA, Razgulyaev OI, Uversky VN, Gripas AF, Gilmanshin RI (1991) Biopolymers 31:119–128

    Article  CAS  PubMed  Google Scholar 

  28. Dickerson RE, Takano T, Eisenberg D, Kallai OB, Samson L, Cooper A, Margoliash E (1971) J Biol Chem 246:1511–1535

    CAS  PubMed  Google Scholar 

  29. Santucci R, Bongiovanni C, Mei G, Ferri T, Polizio F, Desideri A (2000) Biochemistry 39:12632–12638

    Article  CAS  PubMed  Google Scholar 

  30. Myer YP (1968) J Biol Chem 243:2115–2122

    CAS  PubMed  Google Scholar 

  31. Fisher WR, Taniuchi H, Anfinsen CB (1973) J Biol Chem 248:3188–3195

    CAS  PubMed  Google Scholar 

  32. Pfeil W (1998) Protein stability and folding. A collection of thermodynamic data. Springer, Heidelberg, pp 383–389

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Rajiv Bhat (Jawaharlal Nehru University, India) for his help with the DSC measurements. This work was supported by grants from the CSIR and DST to F.A.. M.K.A.K., H.R., and M.I.H. are thankful to the CSIR, UGC, and DST, respectively, for fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faizan Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam Khan, M.K., Rahaman, M.H., Hassan, M.I. et al. Conformational and thermodynamic characterization of the premolten globule state occurring during unfolding of the molten globule state of cytochrome c . J Biol Inorg Chem 15, 1319–1329 (2010). https://doi.org/10.1007/s00775-010-0691-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0691-5

Keywords