Skip to main content
Log in

Nickel induces oxidative burst, NF-κB activation and interleukin-8 production in human neutrophils

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Many lines of evidence have suggested that oxidative stress and inflammation play a pivotal role in the toxicity of nickel salts. Considering that neutrophils are active participants in inflammatory processes, namely by producing high amounts of reactive oxygen species, the aim of the present study was to evaluate the putative activation of human neutrophils’ oxidative burst by nickel. Subsequently, the influence of nickel in the pathways leading to NADPH oxidation in neutrophils was evaluated by measuring protein kinase C (PKC) activation. The effects of nickel on neutrophils’ nuclear factor κB (NF-κB) activation and on the production of the proinflammatory mediators interleukin (IL)-1β, IL-6, IL-8 and tumour necrosis factor α were also evaluated. The results obtained showed that nickel, at concentrations that may be attained in vivo, stimulates the production of superoxide radical (O2 ·−), hydrogen peroxide (H2O2), and hypochlorous acid (HOCl) in human neutrophils in vitro, via activation of PKC. In addition, nickel was shown to activate NF-κB and to induce the production of IL-8 in these cells. These observations indicate that the sustained activation of human neutrophils by nickel may contribute for the long-term adverse effects on human health mediated by this metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABAH:

4-Aminobenzoyl hydrazide

APF:

2-[6-(4′-Amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid

DPI:

Diphenyleneiodonium chloride

EGTA:

Ethylene glycol bis(2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

Gö6983:

3-[1-[3-(Dimethylamino)propyl]-5-methoxy-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione

HEPES:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

HRP:

Horseradish peroxidase

IKK:

IκB kinase

IL:

Interleukin

l-NAME:

N-Nitro-l-arginine methyl ester

MAPK:

Mitogen-activated protein kinase

MPO:

Myeloperoxidase

NF-κB:

Nuclear factor κB

NOS:

Nitric oxide synthase

PKC:

Protein kinase C

PMSF:

Phenylmethanesulfonyl fluoride

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

TNF-α:

Tumour necrosis factor α

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Kasprzak KS, Sunderman FW Jr, Salnikow K (2003) Mutat Res 533:67–97

    CAS  PubMed  Google Scholar 

  2. Chen CY, Wang YF, Huang WR, Huang YT (2003) Toxicol Appl Pharmacol 189:153–159

    Article  CAS  PubMed  Google Scholar 

  3. Costa M, Salnikow K, Sutherland JE, Broday L, Peng W, Zhang Q, Kluz T (2002) Mol Cell Biochem 234–235:265–275

    Article  PubMed  Google Scholar 

  4. Lu H, Shi X, Costa M, Huang C (2005) Mol Cell Biochem 279:45–67

    Article  CAS  PubMed  Google Scholar 

  5. Stejskal V, Hudecek R, Stejskal J, Sterzl I (2006) Neuro Endocrinol Lett 1:7–16

    Google Scholar 

  6. Antonini JM, Taylor MD, Zimmer AT, Roberts JR (2004) J Toxicol Environ Health A 67:233–249

    Article  CAS  PubMed  Google Scholar 

  7. Oller AR (2002) Environ Health Perspect 110(Suppl 5):841–844

    CAS  PubMed  Google Scholar 

  8. Chen F, Shi X (2002) Crit Rev Oncol Hematol 42:105–121

    Article  PubMed  Google Scholar 

  9. Chen F, Ding M, Castranova V, Shi X (2001) Mol Cell Biochem 222:159–171

    Article  CAS  PubMed  Google Scholar 

  10. Tripathi P, Aggarwal A (2006) Curr Sci 90:519–531

    CAS  Google Scholar 

  11. Gloire G, Legrand-Poels S, Piette J (2006) Biochem Pharmacol 72:1493–1505

    Article  CAS  PubMed  Google Scholar 

  12. Kudrin AV (2000) J Trace Elem Med Biol 14:129–142

    Article  CAS  PubMed  Google Scholar 

  13. Lewis JB, Wataha JC, McCloud V, Lockwood PE, Messer RL, Tseng WY (2005) J Biomed Mater Res A 74:474–481

    CAS  PubMed  Google Scholar 

  14. Chen F, Shi X (2002) Environ Health Perspect 110:807–811

    CAS  PubMed  Google Scholar 

  15. Freitas M, Lima JL, Fernandes E (2009) Anal Chim Acta 649:8–23

    Article  CAS  PubMed  Google Scholar 

  16. Splettstoesser WD, Schuff-Werner P (2002) Microsc Res Tech 57:441–455

    Article  CAS  PubMed  Google Scholar 

  17. Swain SD, Rohn TT, Quinn MT (2002) Antioxid Redox Signal 4:69–83

    Article  CAS  PubMed  Google Scholar 

  18. Kato T, Kitagawa S (2006) Int J Hematol 84:205–209

    Article  CAS  PubMed  Google Scholar 

  19. Ade N, Antonios D, Kerdine-Romer S, Boisleve F, Rousset F, Pallardy M (2007) Toxicol Sci 99:488–501

    Article  CAS  PubMed  Google Scholar 

  20. Huang Y, Davidson G, Li J, Yan Y, Chen F, Costa M, Chen LC, Huang C (2002) Environ Health Perspect 5:835–839

    Google Scholar 

  21. Wagner M, Klein CL, van Kooten TG, Kirkpatrick CJ (1998) J Biomed Mater Res 42:443–452

    Article  CAS  PubMed  Google Scholar 

  22. Freitas M, Porto G, Lima JL, Fernandes E (2008) Clin Biochem 41:570–575

    Article  CAS  PubMed  Google Scholar 

  23. Mariano-Oliveira A, De Freitas MS, Monteiro RQ, Barja-Fidalgo C (2008) Int J Biochem Cell Biol 40:517–529

    Article  CAS  PubMed  Google Scholar 

  24. Lewis JB, Messer RL, Pitts L, Hsu SD, Hansen JM, Wataha JC (2009) J Biomed Mater Res B Appl Biomater 88:358–365

    PubMed  Google Scholar 

  25. Freitas M, Porto G, Lima JL, Fernandes E (2010) Biometals 23:31–41

    Article  CAS  PubMed  Google Scholar 

  26. Freitas M, Lima JL, Porto G, Fernandes E (2010) Microchem J 96:167–171

    Article  CAS  Google Scholar 

  27. Zhong ZJ, Troll W, Koenig KL, Frenkel K (1990) Cancer Res 50:7564–7570

    CAS  PubMed  Google Scholar 

  28. Ciapetti G, Granchi D, Verri E, Savarino L, Cenni E, Savioli F, Pizzoferrato A (1998) J Biomed Mater Res 41:455–460

    Article  CAS  PubMed  Google Scholar 

  29. Schmid M, Zimmermann S, Krug HF, Sures B (2007) Environ Int 33:385–390

    Article  CAS  PubMed  Google Scholar 

  30. Freitas M, Porto G, Lima JL, Fernandes E (2009) Talanta 78:1476–1483

    Article  CAS  PubMed  Google Scholar 

  31. Hampton MB, Kettle AJ, Winterbourn CC (1998) Blood 92:3007–3017

    CAS  PubMed  Google Scholar 

  32. Dekker LV, Leitges M, Altschuler G, Mistry N, McDermott A, Roes J, Segal AW (2000) Biochem J 347:285–289

    Article  CAS  PubMed  Google Scholar 

  33. Babior BM (2000) Am J Med 109:33–44

    Article  CAS  PubMed  Google Scholar 

  34. Karlsson A, Dahlgren C (2002) Antioxid Redox Signal 4:49–60

    Article  CAS  PubMed  Google Scholar 

  35. Remijsen QF, Fontayne A, Verdonck F, Clynen E, Schoofs L, Willems J (2006) FEBS Lett 580:6206–6210

    Article  CAS  PubMed  Google Scholar 

  36. Fialkow L, Wang Y, Downey GP (2007) Free Radic Biol Med 42:153–164

    Article  CAS  PubMed  Google Scholar 

  37. Cargnoni A, Ceconi C, Gaia G, Agnoletti L, Ferrari R (2002) J Mol Cell Cardiol 34:997–1005

    Article  CAS  PubMed  Google Scholar 

  38. McDonald PP (2004) Adv Immunol 82:1–48

    Article  CAS  PubMed  Google Scholar 

  39. Tak PP, Firestein GS (2001) J Clin Invest 107:7–11

    Article  CAS  PubMed  Google Scholar 

  40. Blackwell TS, Christman JW (1997) Am J Respir Cell Mol Biol 17:3–9

    CAS  PubMed  Google Scholar 

  41. Denkhaus E, Salnikow K (2002) Crit Rev Oncol Hematol 42:35–56

    Article  CAS  PubMed  Google Scholar 

  42. Huang C, Li J, Costa M, Zhang Z, Leonard SS, Castranova V, Vallyathan V, Ju G, Shi X (2001) Cancer Res 61:8051–8057

    CAS  PubMed  Google Scholar 

  43. M’Bemba-Meka P, Lemieux N, Chakrabarti SK (2005) Chem Biol Interact 156:69–80

    Article  PubMed  Google Scholar 

  44. Cavallo D, Ursini CL, Setini A, Chianese C, Piegari P, Perniconi B, Iavicoli S (2003) Toxicol In Vitro 17:603–607

    Article  CAS  PubMed  Google Scholar 

  45. Salnikow K, Gao M, Voitkun V, Huang X, Costa M (1994) Cancer Res 54:6407–6412

    CAS  PubMed  Google Scholar 

  46. Knaapen AM, Gungor N, Schins RP, Borm PJ, Van Schooten FJ (2006) Mutagenesis 21:225–236

    Article  CAS  PubMed  Google Scholar 

  47. Gungor N, Godschalk RW, Pachen DM, Van Schooten FJ, Knaapen AM (2007) FASEB J 21:2359–2367

    Article  PubMed  Google Scholar 

  48. Nozawa H, Chiu C, Hanahan D (2006) Proc Natl Acad Sci USA 103:12493–12498

    Article  CAS  PubMed  Google Scholar 

  49. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  50. Lewis JB, Randol TM, Lockwood PE, Wataha JC (2003) J Biomed Mater Res A 64:217–224

    Article  PubMed  Google Scholar 

  51. Aiba S, Manome H, Nakagawa S, Mollah ZU, Mizuashi M, Ohtani T, Yoshino Y, Tagami H (2003) J Invest Dermatol 120:390–399

    Article  CAS  PubMed  Google Scholar 

  52. Vanden Berghe W, Plaisance S, Boone E, De Bosscher K, Schmitz ML, Fiers W, Haegeman G (1998) J Biol Chem 273:3285–3290

    Article  Google Scholar 

  53. Cruz MT, Goncalo M, Figueiredo A, Carvalho AP, Duarte CB, Lopes MC (2004) Exp Dermatol 13:18–26

    Article  CAS  PubMed  Google Scholar 

  54. Cloutier A, Ear T, Blais-Charron E, Dubois CM, McDonald PP (2007) J Leukoc Biol 81:567–577

    Article  CAS  PubMed  Google Scholar 

  55. Strieter RM, Kasahara K, Allen RM, Standiford TJ, Rolfe MW, Becker FS, Chensue SW, Kunkel SL (1992) Am J Pathol 141:397–407

    CAS  PubMed  Google Scholar 

  56. Wataha JC, Lewis JB, Volkmann KR, Lockwood PE, Messer RL, Bouillaguet S (2004) J Biomed Mater Res B Appl Biomater 69:11–17

    Article  PubMed  Google Scholar 

  57. Taira M, Sasaki M, Kimura S, Araki Y (2008) J Mater Sci Mater Med 19:2173–2178

    Article  CAS  PubMed  Google Scholar 

  58. Christman JW, Sadikot RT, Blackwell TS (2000) Chest 117:1482–1487

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A.G. and M.F. acknowledge the Portuguese Foundation for Science and Technology (FCT) for financial support for postdoctoral (SFRH/BPD/63179/2009) and Ph.D. (SFRH/BD/28502/2006) grants, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduarda Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitas, M., Gomes, A., Porto, G. et al. Nickel induces oxidative burst, NF-κB activation and interleukin-8 production in human neutrophils. J Biol Inorg Chem 15, 1275–1283 (2010). https://doi.org/10.1007/s00775-010-0685-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0685-3

Keywords

Navigation