Skip to main content
Log in

pH dependence of the enzymatic processing of collagen I by MMP-1 (fibroblast collagenase), MMP-2 (gelatinase A), and MMP-14 ectodomain

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The proteolytic processing of collagen I by three matrix metalloproteinases (MMPs), a collagenase (MMP-1), a gelatinase (MMP-2), and the ectodomain of a membrane-type metalloproteinase (MMP-14), has been investigated at 37 °C between pH 6.0 and 9.2, a pH range reflecting conditions found in different body compartments under various physiopathological processes. In the proteolytic degradation the native collagen triple helix must be partially unwound to allow the binding of α chains to the protease’s active-site cleft. We have found that MMP-1 interacts with the two types of collagen I α chains in a similar fashion, whereas both MMP-2 and MMP-14 bind the two α chains in a different way. The overall enzymatic activity is higher on the α-2 chain for both MMP-1 and MMP-2, whereas the MMP-14 ectodomain preferentially cleaves the α-1 chain. In MMP-2 a marked difference for substrate affinity (higher for the α-1 chain) is overwhelmed by an even more marked propensity to cleave the α-2 chain. As a whole, the three classes of MMPs investigated appear to process collagen I in a significantly different fashion, so various MMPs play different roles in the collagen homeostasis in various compartments (such as bloodstream, synovial fluid, normal and tumoral tissues), where different pH values are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

ECM:

Extracellular matrix

ect-MMP-14:

Ectodomain of matrix metalloproteinase 14

MCA-1:

(7-Methoxycoumarin-4-yl)acetyl-Pro-cyclohexylalanine-Gly-norvaline-His-Ala-(N-3-(2,4-dinitrophenyl)-l-2,3-diaminopropionyl)-NH2

MCA-MMP14:

(7-Methoxycoumarin-4-yl)acetyl-Pro-Leu-Ala-Cys(p-OMeBz)-Trp-Ala-Arg(N-3-(2,4-dinitrophenyl)-l-2,3-diaminopropionyl)-NH2

MCA-omni:

(7-Methoxycoumarin-4-yl)acetyl–Pro-Leu-Gly-Leu-(N-3-(2,4-dinitrophenyl)-l-2,3-diaminopropionyl)-Ala-Arg-NH2

MMP:

Matrix metalloproteinase

PAGE:

Polyacrylamide gel electrophoresis

SDS:

Sodium dodecyl sulfate

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Nagase H, Woessner JF Jr (1999) J Biol Chem 274:21491–21494

    Article  CAS  PubMed  Google Scholar 

  2. Sternlicht MD, Werb Z (2001) Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed  Google Scholar 

  3. Aureli L, Gioia M, Cerbara I, Monaco S, Fasciglione GF, Marini S, Ascenzi P, Topai A, Coletta M (2008) Curr Med Chem 15:2192–2222

    Article  CAS  PubMed  Google Scholar 

  4. Matrisian LM, Bowden GT, Krieg P, Furstenberger G, Briand JP, Leroy P, Breathnach R (1986) Proc Natl Acad Sci USA 83:9413–9417

    Article  CAS  PubMed  Google Scholar 

  5. Hirose T, Riefe RA, GN Smith Jr, Stevens RM, Mainardi CL, Hasty KA (1992) J Rheumatol 19:593–599

    CAS  PubMed  Google Scholar 

  6. Bafetti LM, Young TN, Itoh Y, Stack MS (1998) J Biol Chem 273:143–149

    Article  CAS  PubMed  Google Scholar 

  7. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z (1998) Cell 93:411–422

    Article  CAS  PubMed  Google Scholar 

  8. Opdenakker G, Nelissen I, van Damme J (2003) Lancet Neurol 2:747–756

    Article  CAS  PubMed  Google Scholar 

  9. Patterson ML, Atkinson SJ, Knäuper V, Murphy G (2001) FEBS Lett 503:158–162

    Article  CAS  PubMed  Google Scholar 

  10. Gioia M, Fasciglione GF, Marini S, D’Alessio S, De Sanctis G, Diekmann O, Pieper M, Politi V, Tschesche H, Coletta M (2002) J Biol Chem 277:23123–23130

    Article  CAS  PubMed  Google Scholar 

  11. Tam ER, Moore TD, Butler GS, Overall CM (2004) J Biol Chem 279:43336–43344

    Article  CAS  PubMed  Google Scholar 

  12. Xu X, Wang Y, Lauer-Fields JL, Fields GB, Steffensen B (2004) Matrix Biol 23:171–181

    Article  CAS  PubMed  Google Scholar 

  13. Gioia M, Monaco S, Fasciglione GF, Coletti A, Modesti A, Marini S, Coletta M (2007) J Mol Biol 368:1101–1113

    Article  CAS  PubMed  Google Scholar 

  14. Ottani V, Marini D, Franchi M, Ruggeri A, Raspanti M (2002) Micron 33:587–596

    Article  CAS  PubMed  Google Scholar 

  15. Orgel JPRO, Irving TC, Miller A, Wess TJ (2006) Proc Natl Acad Sci USA 103:9001–9005

    Article  CAS  PubMed  Google Scholar 

  16. Prockop DJ, Kivirikko KI (1995) Annu Rev Biochem 64:403–434

    Article  CAS  PubMed  Google Scholar 

  17. Murphy G, Allan JA, Willenbrock F, Cockett MI, O’Connell JP, Docherty AJP (1992) J Biol Chem 267:9612–9618

    CAS  PubMed  Google Scholar 

  18. Hirose T, Patterson C, Pourmotabbed T, Mainardi CL, Hasty KA (1993) Proc Natl Acad Sci USA 90:2569–2573

    Article  CAS  PubMed  Google Scholar 

  19. Aimes RT, Quigley JP (1995) J Biol Chem 270:5872–5876

    Article  CAS  PubMed  Google Scholar 

  20. Monaco S, Sparano V, Gioia M, Sbardella D, Di Pierro D, Marini S, Coletta M (2006) Protein Sci 15:2805–2815

    Article  CAS  PubMed  Google Scholar 

  21. Wilson CL, Matrisian LM (1996) Int J Biochem Cell Biol 28:123–136

    Article  CAS  PubMed  Google Scholar 

  22. Marchenko GN, Ratnikov BI, Rozanov DV, Godzik A, Deryugina EI, Strongin AY (2001) Biochem J 356:705–718

    Article  CAS  PubMed  Google Scholar 

  23. Ohuchi I, Imai K, Fujii Y, Sato H, Seiki M, Okada Y (1997) J Biol Chem 272:2446–2451

    Article  CAS  PubMed  Google Scholar 

  24. Marini S, Fasciglione GF, De Sanctis G, D’Alessio S, Politi V, Coletta M (2000) J Biol Chem 275:18657–18663

    Article  CAS  PubMed  Google Scholar 

  25. Wike-Hooley JL, Haveman J, Reinhold RS (1984) Radiother Oncol 2:343–366

    Article  CAS  PubMed  Google Scholar 

  26. Jebens EH, Monk-Jones ME (1959) J Bone Joint Surg 41B:388–400

    CAS  Google Scholar 

  27. Stack MS, Gray RD (1989) J Biol Chem 264:4277–4281

    CAS  PubMed  Google Scholar 

  28. Stack MS, Gray RD (1990) Arch Biochem Biophys 281:257–263

    Article  CAS  PubMed  Google Scholar 

  29. Stein RL, Izquierdo-Martin M (1994) Arch Biochem Biophys 308:274–277

    Article  CAS  PubMed  Google Scholar 

  30. Holman CM, Kan CC, Gehring MR, van Wart HE (1999) Biochemistry 38:677–681

    Article  CAS  PubMed  Google Scholar 

  31. Fasciglione GF, Marini S, D’Alessio S, Politi V, Coletta M (2000) Biophys J 79:2138–2149

    Article  CAS  PubMed  Google Scholar 

  32. Leikina E, Mertts MV, Kuznetsova N, Leikin S (2002) Proc Natl Acad Sci USA 99:1314–1318

    Article  CAS  PubMed  Google Scholar 

  33. Laemmli UK (1970) Nature 227:680–683

    Article  CAS  PubMed  Google Scholar 

  34. Chung L, Dinakarpandian D, Yoshida N, Lauer-Fields JL, Fields GB, Visse R, Nagase H (2004) EMBO J 23:3020–3030

    Article  CAS  PubMed  Google Scholar 

  35. Chandrakasan G, Torchia DA, Piez KA (1976) J Biol Chem 251:6062–6067

    CAS  PubMed  Google Scholar 

  36. Wallon UM, Overall CM (1997) J Biol Chem 272:7473–7481

    Article  CAS  PubMed  Google Scholar 

  37. Bradford M (1976) Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  38. Knight CG, Willenbrock F, Murphy G (1992) FEBS Lett 296:263–266

    Article  CAS  PubMed  Google Scholar 

  39. Lauer-Fields JL, Tuzinski KA, Shimokawa K, Nagase H, Fields GB (2000) J Biol Chem 275:13282–13290

    Article  CAS  PubMed  Google Scholar 

  40. Tsukada H, Pourmotabbed T (2002) J Biol Chem 277:27378–27384

    Article  CAS  PubMed  Google Scholar 

  41. Bertini I, Fragai M, Luchinat C, Melikian M, Mylonas E, Sarti N, Svergun DI (2009) J Biol Chem 284(19):12821–12828

    Article  CAS  PubMed  Google Scholar 

  42. Rosenblum G, Van den Steen PE, Cohen SR, Grossmann JG, Frenkel J, Sertchook R, Slack N, Strange RW, Opdenakker G, Sagi I (2007) Structure 15:1227–1236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Italian Space Agency (ASI 2005 OSMA to U.T. and M.C.). The authors are grateful to Hideaki Nagase and Tayebeh Pourmotabbed for very fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Coletta.

Additional information

M. Gioia and G. F. Fasciglione contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gioia, M., Fasciglione, G.F., Monaco, S. et al. pH dependence of the enzymatic processing of collagen I by MMP-1 (fibroblast collagenase), MMP-2 (gelatinase A), and MMP-14 ectodomain. J Biol Inorg Chem 15, 1219–1232 (2010). https://doi.org/10.1007/s00775-010-0680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0680-8

Keywords

Navigation