Skip to main content

Advertisement

Log in

The effect of phosphate accumulation on metal ion homeostasis in Saccharomyces cerevisiae

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Much of what is currently understood about the cell biology of metals involves their interactions with proteins. By comparison, little is known about interactions of metals with intracellular inorganic compounds such as phosphate. Here we examined the role of phosphate in metal metabolism in vivo by genetically perturbing the phosphate content of Saccharomyces cerevisiae cells. Yeast pho80 mutants cannot sense phosphate and have lost control of phosphate uptake, storage, and metabolism. We report here that pho80 mutants specifically elevate cytosolic and nonvacuolar levels of phosphate and this in turn causes a wide range of metal homeostasis defects. Intracellular levels of the hard-metal cations sodium and calcium increase dramatically, and cells become susceptible to toxicity from the transition metals manganese, cobalt, zinc, and copper. Disruptions in phosphate control also elicit an iron starvation response, as pho80 mutants were seen to upregulate iron transport genes. The iron-responsive transcription factor Aft1p appears activated in cells with high phosphate content in spite of normal intracellular iron levels. The high phosphate content of pho80 mutants can be lowered by mutating Pho4p, the transcription factor for phosphate uptake and storage genes. Such lowering of phosphate content by pho4 mutations reversed the high calcium and sodium content of pho80 mutants and prevented the iron starvation response. However, pho4 mutations only partially reversed toxicity from heavy metals, representing a novel outcome of phosphate dysregulation. Overall, these studies underscore the importance of maintaining a charge balance in the cell; a disruption in phosphate metabolism can dramatically impact on metal homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

cDNA:

Complementary DNA

FC:

Fold change

ICP-MS:

Inductively coupled plasma mass spectroscopy

mRNA:

Messenger RNA

OD600 nm :

Optical density at 600 nm

YPD:

1% Bacto yeast extract, 2% Bacto peptone, 2% dextrose

References

  1. Frey CM, Banyasz JL, Stuehr JE (1972) J Am Chem Soc 94:9198–9204

    Article  CAS  PubMed  Google Scholar 

  2. Biaglow JE, Kachur AV (1997) Radiat Res 148:181–187

    Article  CAS  PubMed  Google Scholar 

  3. Barnese K, Gralla EB, Cabelli DE, Valentine JS (2008) J Am Chem Soc 130:4604–4606

    Article  CAS  PubMed  Google Scholar 

  4. Kumble KD, Kornberg A (1995) J Biol Chem 270:5818–5822

    Article  CAS  PubMed  Google Scholar 

  5. Lichko L, Kulakovskaya T, Pestov N, Kulaev I (2006) Biosci Rep 26:45–54

    Article  CAS  PubMed  Google Scholar 

  6. Keasling JD (1997) Ann N Y Acad Sci 829:242–249

    Article  CAS  PubMed  Google Scholar 

  7. Nagata T, Kiyono M, Pan-Hou H (2006) Appl Microbiol Biotechnol 72:777–782

    Article  CAS  PubMed  Google Scholar 

  8. Pan-Hou H, Kiyono M, Omura H, Omura T, Endo G (2002) FEMS Microbiol Lett 207:159–164

    Article  CAS  PubMed  Google Scholar 

  9. Martinez P, Persson BL (1998) Mol Gen Genet 258:628–638

    Article  CAS  PubMed  Google Scholar 

  10. Fristedt U, Weinander R, Martinsson HS, Persson BL (1999) FEBS Lett 458:1–5

    Article  CAS  PubMed  Google Scholar 

  11. Jensen LT, Ajua-Alemanji M, Culotta VC (2003) J Biol Chem 278:42036–42040

    Article  CAS  PubMed  Google Scholar 

  12. Lee YS, Huang K, Quiocho FA, O’Shea EK (2008) Nat Chem Biol 4:25–32

    Article  CAS  PubMed  Google Scholar 

  13. Wykoff DD, Rizvi AH, Raser JM, Margolin B, O’Shea EK (2007) Mol Cell 27:1005–1013

    Article  CAS  PubMed  Google Scholar 

  14. Kaffman A, Herskowitz I, Tjian R, O’Shea EK (1994) Science 263:1153–1156

    Article  CAS  PubMed  Google Scholar 

  15. Ogawa N, DeRisi J, Brown PO (2000) Mol Biol Cell 11:4309–4321

    CAS  PubMed  Google Scholar 

  16. Wippo CJ, Krstulovic BS, Ertel F, Musladin S, Blaschke D, Sturzl S, Yuan GC, Horz W, Korber P, Barbaric S (2009) Mol Cell Biol 29:2960–2981

    Article  CAS  PubMed  Google Scholar 

  17. Serrano R, Ruiz A, Bernal D, Chambers JR, Arino J (2002) Mol Microbiol 46:1319–1333

    Article  CAS  PubMed  Google Scholar 

  18. Reddi AR, Jensen LT, Naranuntarat A, Rosenfeld L, Leung E, Shah R, Culotta VC (2009) Free Radic Biol Med 46:154–162

    Article  CAS  PubMed  Google Scholar 

  19. Portnoy ME, Jensen LT, Culotta VC (2002) Biochem J 362:119–124

    Article  CAS  PubMed  Google Scholar 

  20. Yang M, Jensen LT, Gardner AJ, Culotta VC (2005) Biochem J 386:479–487

    Article  CAS  PubMed  Google Scholar 

  21. Jensen LT, Culotta VC (2002) J Mol Biol 318:251–260

    Article  CAS  PubMed  Google Scholar 

  22. Rutherford JC, Ojeda L, Balk J, Muhlenhoff U, Lill R, Winge DR (2005) J Biol Chem 280:10135–10140

    Article  CAS  PubMed  Google Scholar 

  23. Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD (1996) EMBO J 15:3377–3384

    CAS  PubMed  Google Scholar 

  24. Sherman F (1991) In: Gurthie C, Fink GR (eds) Methods in enzymology. Academic Press, Orlando

  25. Schmitt ME, Brown TA, Trumpower BL (1990) Nucleic Acids Res 18:3091–3092

    Article  CAS  PubMed  Google Scholar 

  26. Eide DJ, Clark S, Nair TM, Gehl M, Gribskov M, Guerinot ML, Harper JF (2005) Genome Biol 6:R77

    Article  PubMed  Google Scholar 

  27. Philpott CC, Protchenko O, Kim YW, Boretsky Y, Shakoury-Elizeh M (2002) Biochem Soc Trans 30:698–702

    Article  CAS  PubMed  Google Scholar 

  28. Yun CW, Bauler M, Moore RE, Klebba PE, Philpott CC (2001) J Biol Chem 276:10218–10223

    Article  CAS  PubMed  Google Scholar 

  29. Blaiseau PL, Lesuisse E, Camadro JM (2001) J Biol Chem 276:34221–34226

    Article  CAS  PubMed  Google Scholar 

  30. Rutherford JC, Jaron S, Winge DR (2003) J Biol Chem 278:27636–27643

    Article  CAS  PubMed  Google Scholar 

  31. Yamaguchi-Iwai Y, Dancis A, Klausner RD (1995) EMBO J 14:1231–1239

    CAS  PubMed  Google Scholar 

  32. Philpott CC, Protchenko O (2008) Eukaryot Cell 7:20–27

    Article  CAS  PubMed  Google Scholar 

  33. Waters BM, Eide DJ (2002) J Biol Chem 277:33749–33757

    Article  CAS  PubMed  Google Scholar 

  34. Wykoff DD, O’Shea EK (2001) Genetics 159:1491–1499

    CAS  PubMed  Google Scholar 

  35. Sethuraman A, Rao NN, Kornberg A (2001) Proc Natl Acad Sci USA 98:8542–8547

    Article  CAS  PubMed  Google Scholar 

  36. Hurlimann HC, Stadler-Waibel M, Werner TP, Freimoser FM (2007) Mol Biol Cell 18:4438–4445

    Article  CAS  PubMed  Google Scholar 

  37. Swinnen E, Rosseels J, Winderickx J (2005) Curr Genet 48:18–33

    Article  CAS  PubMed  Google Scholar 

  38. Wanke V, Pedruzzi I, Cameroni E, Dubouloz F, De Virgilio C (2005) EMBO J 24:4271–4278

    Article  CAS  PubMed  Google Scholar 

  39. Dix DR, Bridgham JT, Broderius MA, Byersdorfer CA, Eide DJ (1994) J Biol Chem 269:26092–26099

    CAS  PubMed  Google Scholar 

  40. Portnoy ME, Liu XF, Culotta VC (2000) Mol Cell Biol 20:7893–7902

    Article  CAS  PubMed  Google Scholar 

  41. Archibald FS, Fridovich I (1982) Arch Biochem Biophys 214:452–463

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank D. Winge and J. Arino for plasmids. We thank J. Mihalic for help with ICP-MS analysis. This work was funded by the Johns Hopkins University NIEHS Center and by NIH grant ES 08996. L.R. and A.R were supported by NIEHS training grant ES 07141 and A.R. was supported by an NIH/NIGMS fellowship (F32GM093550). ICP-MS analysis was supported in part by the Maryland Cigarette Restitution Fund Program at Johns Hopkins University and the NIEHS Center (P30 ES00319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria C. Culotta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenfeld, L., Reddi, A.R., Leung, E. et al. The effect of phosphate accumulation on metal ion homeostasis in Saccharomyces cerevisiae . J Biol Inorg Chem 15, 1051–1062 (2010). https://doi.org/10.1007/s00775-010-0664-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0664-8

Keywords

Navigation