Skip to main content
Log in

Soluble artificial metalloproteases with broad substrate selectivity, high reactivity, and high thermal and chemical stabilities

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

To design soluble artificial proteases that cleave peptide backbones of a wide range of proteins with high reactivity, artificial active sites comprising the Cu(II) complex of 1-oxa-4,7,10-triazacyclodedecane (oxacyclen) and the aldehyde group were synthesized. The aldehyde group was employed as the binding site in view of its ability to reversibly form imine bonds with ammonium groups exposed on the surfaces of proteins, and Cu(II) oxacyclen was exploited as the catalytic group for peptide hydrolysis. The artificial metalloproteases synthesized in the present study cleaved all of the protein substrates examined (albumin, γ-globulin, myoglobin, and lysozyme). In addition, the activity of the best soluble artificial protease was enhanced by up to 190-fold in terms of k cat/K m. When the temperature was raised to 80 °C, the activities of the artificial proteases were significantly enhanced. The activity of the artificial protease was not greatly affected by surfactants, including sodium dodecyl sulfate. The intermediacy of the imine complex formed between the artificial protease and the protein substrate was supported by an experiment using sodium cyanoborohydride. Soluble artificial metalloproteases with broad substrate selectivity, high reactivity, high thermal and chemical stabilities, and small molecular weights were thus synthesized by positioning the aldehyde group in proximity to Cu(II) oxacyclen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Cyclen:

1,4,7,10-Tetraazacyclododecane

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

Oxacyclen:

1-Oxa-4,7,10-triazacyclododecane

PAGE:

Polyacrylamide gel electrophoresis

SDS:

Sodium dodecyl sulfate

TOF:

Time-of-flight

References

  1. Radzicka A, Wolfenden R (1996) J Am Chem Soc 118:6105–6109

    Article  CAS  Google Scholar 

  2. Bryant RAR, Hansen DA (1998) J Am Chem Soc 120:8910–8913

    Article  Google Scholar 

  3. Overall CM, Blobel CP (2007) Nat Rev Mol Cell Biol 8:245–257

    Article  CAS  PubMed  Google Scholar 

  4. Rao MB, Tanksale AP, Ghatge MS, Deshpande VV (1998) Microbiol Mol Biol Rev 62:597–635

    CAS  PubMed  Google Scholar 

  5. Kirby AJ (1980) Adv Phys Org Chem 17:183–278

    Article  CAS  Google Scholar 

  6. Sutton PA, Buckingham DA (1987) Acc Chem Res 20:357–364

    Article  CAS  Google Scholar 

  7. Suh J, Park TH, Hwang BK (1992) J Am Chem Soc 114:5141–5146

    Article  CAS  Google Scholar 

  8. Chin J (1991) Acc Chem Res 24:145–152

    Article  CAS  Google Scholar 

  9. Suh J (2003) Acc Chem Res 36:562–570

    Article  CAS  PubMed  Google Scholar 

  10. Chin J, Jubian V, Mrejen K (1990) J Chem Soc Chem Commun 1326–1328

  11. Zhu L, Qin L, Parac TN, Kostic NM (1994) J Am Chem Soc 116:5218–5224

    Article  CAS  Google Scholar 

  12. Hegg EL, Burstyn JN (1995) J Am Chem Soc 117:7015–7016

    Article  CAS  Google Scholar 

  13. Jang BB, Lee KP, Min DH, Suh J (1998) J Am Chem Soc 120:12008–12016

    Article  CAS  Google Scholar 

  14. Kaminskaia NV, Johnson TW, Kostic NM (1999) J Am Chem Soc 121:8663–8664

    Article  CAS  Google Scholar 

  15. Saha MK, Bernal I (2003) J Chem Soc Chem Commun 612–613

  16. Kasai M, Ravi RG, Shealy SJ, Grant KB (2004) Inorg Chem 43:6130–6132

    Article  Google Scholar 

  17. Suh J, Hah SS (1980) J Am Chem Soc 120:10088–10093

    Article  Google Scholar 

  18. Suh J, Oh SJ (2000) Org Chem 65:7534–7540

    Article  CAS  Google Scholar 

  19. Oh S, Chang W, Suh J (2001) Bioorg Med Chem Lett 11:1469–1472

    Article  CAS  PubMed  Google Scholar 

  20. Kim H, Paik H, Kim M, Chung YS, Suh J (2002) Bioorg Med Chem Lett 12:2557–2560

    Article  CAS  PubMed  Google Scholar 

  21. Kim H, Kim M, Paik H, Chung Y-S, Hong IS, Suh J (2002) Bioorg Med Chem Lett 12:3247–3250

    Article  CAS  PubMed  Google Scholar 

  22. Chei WS, Suh J (2007) In: Karlin KD (ed) Progress in inorganic chemistry, vol 55. Wiley, Hoboken, pp 79–142

    Chapter  Google Scholar 

  23. Suh J, Chei WS (2008) Curr Opin Chem Biol 12:207–213

    Article  CAS  PubMed  Google Scholar 

  24. Lee TY, Suh J (2009) Chem Soc Rev 38:1949–1957

    Article  CAS  PubMed  Google Scholar 

  25. Suh J (1992) Acc Chem Res 25:273–279

    Article  CAS  Google Scholar 

  26. Rana TM, Meares CF (1991) Proc Natl Acad Sci USA 88:10578–10582

    Article  CAS  PubMed  Google Scholar 

  27. Shepartz A, Cuenoud B (1990) J Am Chem Soc 112:3247–3249

    Article  Google Scholar 

  28. Hoyer D, Cho H, Schultz PG (1990) J Am Chem Soc 112:3250–32449

    Article  Google Scholar 

  29. Gallagher J, Zelenko O, Walts AD, Sigman DS (1998) Biochemistry 37:2096–2104

    Article  CAS  PubMed  Google Scholar 

  30. Suh J, Moon S-J (2001) Inorg Chem 40:4890–4895

    Article  CAS  PubMed  Google Scholar 

  31. Moon SJ, Jeon JW, Kim H, Suh MP, Suh J (2000) J Am Chem Soc 122:7742–7749

    Article  CAS  Google Scholar 

  32. Yoo CE, Chae PS, Kim JE, Jeong EJ, Suh J (2003) J Am Chem Soc 125:14580–14589

    Article  CAS  PubMed  Google Scholar 

  33. Milovic NM, Badjic JD, Kostic NM (2004) J Am Chem Soc 126:696–697

    Article  CAS  PubMed  Google Scholar 

  34. Yang G, Miao R, Li Y, Hong J, Zhao C, Guo Z, Zhu L (2005) Dalton Trans 1613–1619

  35. Jitsukawa K, Mabuchi T, Einaga H, Masuda H (2006) Eur J Inorg Chem 21:4254–4263

    Article  Google Scholar 

  36. Yashiro M, Kawakami Y, Taya J, Arai S, Fujii Y (2009) Chem Commun 1544–1546

  37. Rajković S, Glisić BD, Zivković MD, Djuran MI (2009) Bioorg Chem 37:173–179

    Article  PubMed  Google Scholar 

  38. Yoo SH, Lee BJ, Kim H, Suh J (2005) J Am Chem Soc 127:9593–9602

    Article  CAS  PubMed  Google Scholar 

  39. Jang SW, Suh J (2008) Org Lett 10:481–484

    Article  CAS  PubMed  Google Scholar 

  40. Bodwell CE, McClain PE (1971) In: Price JF, Schweigert BS (eds) The science of meat and meat products, 2nd edn. WH Freeman, San Francisco, p 97

  41. Lameli UK (1970) Nature 227:680–685

    Article  Google Scholar 

  42. Hames BD (1990) Chapter 1. In: Hames, BD, Rickwood D (eds) Gel electrophoresis of proteins. IRL, New York

  43. Amorim MTS, Chaves S, Delgado R, Fraústo da Silva JJR (1991) J Chem Soc Dalton Trans 3065–3072

  44. Suckau D, Resemann A, Schuerenberg M, Hufnagel P, Franzen J, Holl A (2003) Anal Bioanal Chem 376:952–965

    Article  CAS  PubMed  Google Scholar 

  45. Jeon JW, Son SJ, Yoo CE, Hong IS, Song JB, Suh J (2002) Org Lett 4:4155–4158

    Article  CAS  PubMed  Google Scholar 

  46. Jeon JW, Son SJ, Yoo CE, Hong IS, Suh J (2003) Bioorg Med Chem 11:2901–2910

    Article  CAS  PubMed  Google Scholar 

  47. Polgár L (1989) Mechanisms of protease action. CRC, Boca Raton

  48. Borch RF, Bernstein MD, Durst HD (1971) J Am Chem Soc 93:2897–2904

    Article  CAS  Google Scholar 

  49. Michaux C, Pomroy NC, Privé GG (2008) J Mol Biol 375:1477–1488

    Article  CAS  PubMed  Google Scholar 

  50. Fujie T (2002) Chem Rev 102:4885–4906

    Article  Google Scholar 

  51. Taguchi H, Planque S, Sapparapu G, Boivin S, Hara M, Nishiyama Y, Paul S (2008) J Biol Chem 283:36724–36733

    Article  CAS  PubMed  Google Scholar 

  52. Varadarajan N, Rodriguez S, Hwang B-Y, Georgiou G, Iverson BL (2008) Nat Chem Biol 4:290–294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 2009-0072151). This paper is dedicated to the memory of the late Prof. Chi Sun Hahn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junghun Suh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 545 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.G., Yoo, S.H., Chei, W.S. et al. Soluble artificial metalloproteases with broad substrate selectivity, high reactivity, and high thermal and chemical stabilities. J Biol Inorg Chem 15, 1023–1031 (2010). https://doi.org/10.1007/s00775-010-0662-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0662-x

Keywords

Navigation