Skip to main content
Log in

Characteristic effect of an anticancer dinuclear platinum(II) complex on the higher-order structure of DNA

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

It is known that a 1,2,3-triazolato-bridged dinuclear platinum(II) complex, [{cis-Pt(NH3)2}2(µ-OH)(µ-1,2,3-ta-N 1,N 2)](NO3)2 (AMTA), shows high in vitro cytotoxicity against several human tumor cell lines and circumvents cross-resistance to cisplatin. In the present study, we examined a dose- and time-dependent effect of AMTA on the higher-order structure of a large DNA, T4 phage DNA (166 kbp), by adapting single-molecule observation with fluorescence microscopy. It was found that AMTA induces the shrinking of DNA into a compact state with a much higher potency than cisplatin. From a quantitative analysis of the Brownian motion of individual DNA molecules in solution, it became clear that the density of a DNA segment in the compact state is about 2,000 times greater than that in the absence of AMTA. Circular dichroism spectra suggested that AMTA causes a transition from the B to the C form in the secondary structure of DNA, which is characterized by fast and slow processes. Electrophoretic measurements indicated that the binding of AMTA to supercoiled DNA induces unwinding of the double helix. Our results indicate that AMTA acts on DNA through both electrostatic interaction and coordination binding; the former causes a fast change in the secondary structure from the B to the C form, whereas the latter promotes shrinking in the higher-order structure as a relatively slow kinetic process. The shrinking effect of AMTA on DNA is attributable to the possible increase in the number of bridges along a DNA molecule. It is concluded that AMTA interacts with DNA in a manner markedly different from that of cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rosenberg B, Van Camp L, Krigas T (1965) Nature 205:698–699

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg B, Van Camp L, Trosko JE, Mansour VH (1969) Nature 222:385–386

    Article  CAS  PubMed  Google Scholar 

  3. Hambley TW (2007) Dalton Trans 4929–4937

  4. Bruijnincx PC, Sadler PJ (2008) Curr Opin Chem Biol 12:197–206

    Article  CAS  PubMed  Google Scholar 

  5. Reedijk J (1999) Curr Opin Chem Biol 3:236–240

    Article  CAS  PubMed  Google Scholar 

  6. Fuertes MA, Castilla J, Alonso C, Pérez JM (2002) Curr Med Chem Anticancer Agents 2:539–551

    Article  CAS  PubMed  Google Scholar 

  7. Kostova I (2006) Recent Pat Anticancer Drug Discov 1:1–22

    Article  CAS  PubMed  Google Scholar 

  8. Reedijk J (2003) Proc Natl Acad Sci USA 100:3611–3616

    Article  CAS  PubMed  Google Scholar 

  9. Spiegel K, Magistrato A (2006) Org Biomol Chem 4:2507–2517

    Article  CAS  PubMed  Google Scholar 

  10. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498

    Article  CAS  PubMed  Google Scholar 

  11. Chaney SG, Campbell SL, Bassett E, Wu Y (2005) Crit Rev Oncol Hematol 53:3–11

    Article  PubMed  Google Scholar 

  12. Fuertes MA, Alonso C, Pérez JM (2003) Chem Rev 103:645–662

    Article  CAS  PubMed  Google Scholar 

  13. Vinje J, Sletten E (2007) Anticancer Agents Med Chem 7:35–54

    Article  CAS  PubMed  Google Scholar 

  14. Burchenal JH, Kalaher K, Dew K, Lokys L, Gale G (1978) Biochimie 60:961–965

    Article  CAS  Google Scholar 

  15. Eastman A, Bresnick E (1981) Biochem Pharmacol 30:2721–2723

    Article  CAS  PubMed  Google Scholar 

  16. Qu Y, Farrell N (1991) J Am Chem Soc 113:4851–4857

    Article  CAS  Google Scholar 

  17. Kraker AJ, Hoeschele JD, Elliott WL, Showalter HD, Sercel AD, Farrell NP (1992) J Med Chem 35:4526–4532

    Article  CAS  PubMed  Google Scholar 

  18. Farrell N, Qu Y, Bierbach U, Valsecchi M, Menta E et al (1999) In: Lippert B (ed) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Wiley, Basel, p 479

    Google Scholar 

  19. Kozelka J, Segal E, Bois C (1992) J Inorg Biochem 47:67–80

    Article  CAS  PubMed  Google Scholar 

  20. Roberts JD, Van Houten B, Qu Y, Farrell NP (1989) Nucleic Acids Res 17:9719–9733

    Article  CAS  PubMed  Google Scholar 

  21. Zerzankova L, Suchankova T, Vrana O, Farrell NP, Brabec V, Kasparkova J (2010) Biochem Pharmacol 79:112–121

    Article  CAS  PubMed  Google Scholar 

  22. Farrel NP (2004) Semin Oncol 31:1–9

    Article  Google Scholar 

  23. Komeda S, Lutz M, Spek AL, Yamanaka Y, Sato T, Chikuma M, Reedijk J (2002) J Am Chem Soc 124:4738–4746

    Article  CAS  PubMed  Google Scholar 

  24. Komeda S, Yamane H, Chikuma M, Reedijk J (2004) Eur J Inorg Chem 24:4828–4835

    Article  Google Scholar 

  25. Yoshikawa Y, Yoshikawa K, Kanbe T (1996) Biophys Chem 61:93–100

    Article  CAS  PubMed  Google Scholar 

  26. Katsuda Y, Yoshikawa Y, Sato T, Saito Y, Chikuma M, Suzuki M, Yoshikawa K (2009) Chem Phys Lett 473:155–159

    Article  CAS  Google Scholar 

  27. Krautbauer R, Clausen-Schaumann H, Gaub H (2000) Angew Chem Int Ed 39:3912–3915

    CAS  Google Scholar 

  28. Hou XM, Zhang XH, Wei KJ, Ji C, Dou SX, Wang WC, Li M, Wang PY (2009) Nucleic Acid Res 37:1400–1410

    Article  CAS  PubMed  Google Scholar 

  29. Dhara SG (1970) Indian J Chem 8:193–194

    Google Scholar 

  30. Komeda S, Lutz M, Spek AL, Chikuma M, Reedijk J (2000) Inorg Chem 39:4230–4236

    Article  CAS  PubMed  Google Scholar 

  31. Rye HS, Yue S, Wemmer DE, Quesada MA, Haugland RP, Mathies RA, Glazer AN (1992) Nucleic Acids Res 20:2803–2812

    Article  CAS  PubMed  Google Scholar 

  32. Yoshikawa K, Matsuzawa Y, Minagawa K, Doi M, Matsumoto M (1992) Biochem Biophys Res Commun 188:1274–1279

    Article  CAS  PubMed  Google Scholar 

  33. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, Oxford

    Google Scholar 

  34. Yoshikawa K, Matsuzawa Y (1995) Physica D 84:220–227

    Article  CAS  Google Scholar 

  35. Matsuyama A, Tagashira Y, Nagata C (1971) Biochim Biophys Acta 240:184–190

    CAS  PubMed  Google Scholar 

  36. Weischet WO, Tatchell K, Van Holde KE, Klump H (1978) Nucleic Acids Res 5:139–160

    Article  CAS  PubMed  Google Scholar 

  37. Van Holde KE (1988) Chromatin. Springer, New York, pp 231–241

  38. Ivanov VI, Minchenkova LE, Schyolkina AK, Poletayev AI (1973) Biopolymers 12:89–110

    Article  CAS  PubMed  Google Scholar 

  39. Poklar N, Pilch DS, Lippard SJ, Redding EA, Dunham SU, Breslauer KJ (1996) Proc Natl Acad Sci USA 93:7606–7611

    Article  CAS  PubMed  Google Scholar 

  40. Pilch DS, Dunham SU, Jamieson ER, Lippard SJ, Breslauer KJ (2000) J Mol Biol 296:803–812

    Article  CAS  PubMed  Google Scholar 

  41. Keller W (1975) Proc Natl Acad Sci USA 72:4876–4880

    Article  CAS  PubMed  Google Scholar 

  42. Hsieh T, Brutlag D (1980) Cell 21:115–125

    Article  CAS  PubMed  Google Scholar 

  43. Van Holde KE (1988) Chromatin. Springer, New York, pp 60–68

    Google Scholar 

  44. Utsuno K, Tsuboi M, Katsumata S, Iwamoto T (2001) Chem Pharm Bull 49:413–417

    Article  CAS  PubMed  Google Scholar 

  45. Komeda S, Bombard S, Perrier S, Reedijk J, Kozelka J (2003) J Inorg Biochem 96:357–366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research (20034056, 18GS0421) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Yoshikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kida, N., Katsuda, Y., Yoshikawa, Y. et al. Characteristic effect of an anticancer dinuclear platinum(II) complex on the higher-order structure of DNA. J Biol Inorg Chem 15, 701–707 (2010). https://doi.org/10.1007/s00775-010-0637-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0637-y

Keywords

Navigation