Abstract
It is known that a 1,2,3-triazolato-bridged dinuclear platinum(II) complex, [{cis-Pt(NH3)2}2(µ-OH)(µ-1,2,3-ta-N 1,N 2)](NO3)2 (AMTA), shows high in vitro cytotoxicity against several human tumor cell lines and circumvents cross-resistance to cisplatin. In the present study, we examined a dose- and time-dependent effect of AMTA on the higher-order structure of a large DNA, T4 phage DNA (166 kbp), by adapting single-molecule observation with fluorescence microscopy. It was found that AMTA induces the shrinking of DNA into a compact state with a much higher potency than cisplatin. From a quantitative analysis of the Brownian motion of individual DNA molecules in solution, it became clear that the density of a DNA segment in the compact state is about 2,000 times greater than that in the absence of AMTA. Circular dichroism spectra suggested that AMTA causes a transition from the B to the C form in the secondary structure of DNA, which is characterized by fast and slow processes. Electrophoretic measurements indicated that the binding of AMTA to supercoiled DNA induces unwinding of the double helix. Our results indicate that AMTA acts on DNA through both electrostatic interaction and coordination binding; the former causes a fast change in the secondary structure from the B to the C form, whereas the latter promotes shrinking in the higher-order structure as a relatively slow kinetic process. The shrinking effect of AMTA on DNA is attributable to the possible increase in the number of bridges along a DNA molecule. It is concluded that AMTA interacts with DNA in a manner markedly different from that of cisplatin.
Similar content being viewed by others
References
Rosenberg B, Van Camp L, Krigas T (1965) Nature 205:698–699
Rosenberg B, Van Camp L, Trosko JE, Mansour VH (1969) Nature 222:385–386
Hambley TW (2007) Dalton Trans 4929–4937
Bruijnincx PC, Sadler PJ (2008) Curr Opin Chem Biol 12:197–206
Reedijk J (1999) Curr Opin Chem Biol 3:236–240
Fuertes MA, Castilla J, Alonso C, Pérez JM (2002) Curr Med Chem Anticancer Agents 2:539–551
Kostova I (2006) Recent Pat Anticancer Drug Discov 1:1–22
Reedijk J (2003) Proc Natl Acad Sci USA 100:3611–3616
Spiegel K, Magistrato A (2006) Org Biomol Chem 4:2507–2517
Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498
Chaney SG, Campbell SL, Bassett E, Wu Y (2005) Crit Rev Oncol Hematol 53:3–11
Fuertes MA, Alonso C, Pérez JM (2003) Chem Rev 103:645–662
Vinje J, Sletten E (2007) Anticancer Agents Med Chem 7:35–54
Burchenal JH, Kalaher K, Dew K, Lokys L, Gale G (1978) Biochimie 60:961–965
Eastman A, Bresnick E (1981) Biochem Pharmacol 30:2721–2723
Qu Y, Farrell N (1991) J Am Chem Soc 113:4851–4857
Kraker AJ, Hoeschele JD, Elliott WL, Showalter HD, Sercel AD, Farrell NP (1992) J Med Chem 35:4526–4532
Farrell N, Qu Y, Bierbach U, Valsecchi M, Menta E et al (1999) In: Lippert B (ed) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Wiley, Basel, p 479
Kozelka J, Segal E, Bois C (1992) J Inorg Biochem 47:67–80
Roberts JD, Van Houten B, Qu Y, Farrell NP (1989) Nucleic Acids Res 17:9719–9733
Zerzankova L, Suchankova T, Vrana O, Farrell NP, Brabec V, Kasparkova J (2010) Biochem Pharmacol 79:112–121
Farrel NP (2004) Semin Oncol 31:1–9
Komeda S, Lutz M, Spek AL, Yamanaka Y, Sato T, Chikuma M, Reedijk J (2002) J Am Chem Soc 124:4738–4746
Komeda S, Yamane H, Chikuma M, Reedijk J (2004) Eur J Inorg Chem 24:4828–4835
Yoshikawa Y, Yoshikawa K, Kanbe T (1996) Biophys Chem 61:93–100
Katsuda Y, Yoshikawa Y, Sato T, Saito Y, Chikuma M, Suzuki M, Yoshikawa K (2009) Chem Phys Lett 473:155–159
Krautbauer R, Clausen-Schaumann H, Gaub H (2000) Angew Chem Int Ed 39:3912–3915
Hou XM, Zhang XH, Wei KJ, Ji C, Dou SX, Wang WC, Li M, Wang PY (2009) Nucleic Acid Res 37:1400–1410
Dhara SG (1970) Indian J Chem 8:193–194
Komeda S, Lutz M, Spek AL, Chikuma M, Reedijk J (2000) Inorg Chem 39:4230–4236
Rye HS, Yue S, Wemmer DE, Quesada MA, Haugland RP, Mathies RA, Glazer AN (1992) Nucleic Acids Res 20:2803–2812
Yoshikawa K, Matsuzawa Y, Minagawa K, Doi M, Matsumoto M (1992) Biochem Biophys Res Commun 188:1274–1279
Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, Oxford
Yoshikawa K, Matsuzawa Y (1995) Physica D 84:220–227
Matsuyama A, Tagashira Y, Nagata C (1971) Biochim Biophys Acta 240:184–190
Weischet WO, Tatchell K, Van Holde KE, Klump H (1978) Nucleic Acids Res 5:139–160
Van Holde KE (1988) Chromatin. Springer, New York, pp 231–241
Ivanov VI, Minchenkova LE, Schyolkina AK, Poletayev AI (1973) Biopolymers 12:89–110
Poklar N, Pilch DS, Lippard SJ, Redding EA, Dunham SU, Breslauer KJ (1996) Proc Natl Acad Sci USA 93:7606–7611
Pilch DS, Dunham SU, Jamieson ER, Lippard SJ, Breslauer KJ (2000) J Mol Biol 296:803–812
Keller W (1975) Proc Natl Acad Sci USA 72:4876–4880
Hsieh T, Brutlag D (1980) Cell 21:115–125
Van Holde KE (1988) Chromatin. Springer, New York, pp 60–68
Utsuno K, Tsuboi M, Katsumata S, Iwamoto T (2001) Chem Pharm Bull 49:413–417
Komeda S, Bombard S, Perrier S, Reedijk J, Kozelka J (2003) J Inorg Biochem 96:357–366
Acknowledgments
This work was supported in part by Grants-in-Aid for Scientific Research (20034056, 18GS0421) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kida, N., Katsuda, Y., Yoshikawa, Y. et al. Characteristic effect of an anticancer dinuclear platinum(II) complex on the higher-order structure of DNA. J Biol Inorg Chem 15, 701–707 (2010). https://doi.org/10.1007/s00775-010-0637-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00775-010-0637-y