Skip to main content
Log in

Kinetic and structural studies on roles of the serine ligand and a strictly conserved tyrosine residue in nitrile hydratase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nitrile hydratases (NHase), which catalyze the hydration of nitriles to amides, have an unusual Fe3+ or Co3+ center with two modified Cys ligands: cysteine sulfininate (Cys-SO2 ) and either cysteine sulfenic acid or cysteine sulfenate [Cys-SO(H)]. Two catalytic mechanisms have been proposed. One is that the sulfenyl oxygen activates a water molecule, enabling nucleophilic attack on the nitrile carbon. The other is that the Ser ligand ionizes the strictly conserved Tyr, activating a water molecule. Here, we characterized mutants of Fe-type NHase from Rhodococcus erythropolis N771, replacing the Ser and Tyr residues, αS113A and βY72F. The αS113A mutation partially affected catalytic activity and did not change the pH profiles of the kinetic parameters. UV–vis absorption spectra indicated that the electronic state of the Fe center was altered by the αS113A mutation, but the changes could be prevented by a competitive inhibitor, n-butyric acid. The overall structure of the αS113A mutant was similar to that of the wild type, but significant changes were observed around the catalytic cavity. Like the UV–vis spectra, the changes were compensated by the substrate or product. The Ser ligand is important for the structure around the catalytic cavity, but is not essential for catalysis. The βY72F mutant exhibited no activity. The structure of the βY72F mutant was highly conserved but was found to be the inactivated state, with αCys114-SO(H) oxidized to Cys-SO2 , suggesting that βTyr72 affected the electronic state of the Fe center. The catalytic mechanism is discussed on the basis of the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CtNHase:

Nitrile hydratase from Comamonas testosteroni Ni1

Cys-SO2H:

Cysteine sulfinic acid

Cys-SOH:

Cysteine sulfenic acid

HPLC:

High-performance liquid chromatography

n-BA:

n-Butyric acid

NHase:

Nitrile hydratase

PDB:

Protein Data Bank

PtNHase:

Nitrile hydratase from Pesudonocardia thermophila JCM 3095

ReNHase:

Nitrile hydratase from Rhodococcus erythropolis N771

RMSD:

Root-mean-square deviation

SCNase:

Thiocyanate hydrolase

t-BuCN:

tert-Butylnitrile

t-BuCONH2:

Trimethylacetamide

t-BuNC:

tert-Butylisonitrile

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Asano Y, Tani Y, Yamada H (1980) Agric Biol Chem 44:2251–2252

    CAS  Google Scholar 

  2. Kobayashi M, Shimizu S (1998) Nat Biotechnol 16:733–736

    Article  CAS  PubMed  Google Scholar 

  3. Endo I, Nojiri M, Tsujimura M, Nakasako M, Nagashima S, Yohda M, Odaka M (2001) J Inorg Biochem 83:247–253

    Article  CAS  PubMed  Google Scholar 

  4. Sugiura Y, Kuwahara J, Nagasawa Y, Yamada Y (1987) J Am Chem Soc 154:522–528

    Google Scholar 

  5. Brennan BA, Alms G, Nelson MJ, Durney LT, Scarrow RC (1996) J Am Chem Soc 118:9144–9145

    Article  Google Scholar 

  6. Kopf MA, Bonnet D, Artaud I, Petre D, Mansuy D (1996) Eur J Biochem 240:239–244

    Article  CAS  PubMed  Google Scholar 

  7. Odaka M, Fujii K, Hoshino M, Noguchi T, Tsujimura M, Nagashima S, Yohda M, Nagamune T, Inoue Y, Endo I (1997) J Am Chem Soc 119:3785–3791

    Article  CAS  Google Scholar 

  8. Noguchi T, Hoshino M, Tsujimura M, Odaka M, Inoue Y, Endo I (1996) Biochemistry 35:16777–16781

    Article  CAS  PubMed  Google Scholar 

  9. Bonnet D, Artaud I, Moali C, Pétré D, Mansuy D (1997) FEBS Lett 409:216–220

    Article  CAS  PubMed  Google Scholar 

  10. Huang W, Jia J, Cummings J, Nelson M, Schneider G, Lindqvist Y (1997) Structure 5:691–699

    Article  CAS  PubMed  Google Scholar 

  11. Nagashima S, Nakasako M, Dohmae N, Tsujimura M, Takio K, Odaka M, Yohda M, Kamiya N, Endo I (1998) Nat Struct Biol 5:347–351

    Article  CAS  PubMed  Google Scholar 

  12. Miyanaga A, Fushinobu S, Ito K, Wakagi T (2001) Biochem Biophys Res Commun 288:1169–1174

    Article  CAS  PubMed  Google Scholar 

  13. Hourai S, Miki M, Takashima Y, Mitsuda S, Yanagi K (2003) Biochem Biophys Res Commun 312:340–345

    Article  CAS  PubMed  Google Scholar 

  14. Arakawa T, Kawano Y, Kataoka S, Katayama Y, Kamiya N, Yohda M, Odaka M (2007) J Mol Biol 366:1497–1509

    Article  CAS  PubMed  Google Scholar 

  15. Noguchi T, Nojiri M, Takei K, Odaka M, Kamiya N (2003) Biochemistry 42:11642–11650

    Article  CAS  PubMed  Google Scholar 

  16. Dey A, Chow M, Taniguchi K, Lugo-Mas P, Davin S, Maeda M, Kovacs J, Odaka M, Hodgson K, Hedman B, Solomon EI (2006) J Am Chem Soc 128:533–541

    Article  CAS  PubMed  Google Scholar 

  17. Nakasako M, Odaka M, Yohda M, Dohmae N, Takio K, Kamiya N, Endo I (1999) Biochemistry 38:9887–9898

    Article  CAS  PubMed  Google Scholar 

  18. Kovacs JA (2004) Chem Rev 104:825–848

    Article  CAS  PubMed  Google Scholar 

  19. Yano T, Ozawa T, Masuda H (2008) Chem Lett 37:672–677

    Article  CAS  Google Scholar 

  20. Murakami T, Nojiri M, Nakayama H, Odaka M, Yohda M, Dohmae N, Takio K, Nagamune T, Endo I (2000) Protein Sci 9:1024–1030

    Article  CAS  PubMed  Google Scholar 

  21. Tsujimura M, Odaka M, Nakayama H, Dohmae N, Koshino H, Asami T, Hoshino M, Takio K, Yoshida S, Maeda M, Endo I (2003) J Am Chem Soc 125:11532–11538

    Article  CAS  PubMed  Google Scholar 

  22. Noveron JC, Olmstead MM, Mascharak PK (1999) J Am Chem Soc 121:3553–3554

    Article  CAS  Google Scholar 

  23. Tyler LA, Noveron JC, Olmstead MM, Mascharak PK (2003) Inorg Chem 42:5751–5761

    Article  CAS  PubMed  Google Scholar 

  24. Heinrich L, Mary-Verla A, Li Y, Vassermann J, Chottard JC (2001) Eur J Inorg Chem 9:2203–2206

    Article  Google Scholar 

  25. Lugo-Mas P, Dey A, Xu L, Davin S, Benedict J, Kaminsky W, Hodgson K, Hedman B, Solomon EI, Kovacs J (2006) J Am Chem Soc 128:11211–11221

    Article  CAS  PubMed  Google Scholar 

  26. Yano T, Wasada-Tsutsui Y, Arii H, Yamaguchi S, Funahashi Y, Ozawa T, Masuda H (2007) Inorg Chem 46:10345–10353

    Article  CAS  PubMed  Google Scholar 

  27. Hashimoto K, Suzuki H, Taniguchi K, Noguchi T, Yohda M, Odaka M (2008) J Biol Chem 283:36617–36623

    Article  CAS  PubMed  Google Scholar 

  28. Taniguchi K, Murata K, Murakami Y, Takahashi S, Nakamura T, Hashimoto K, Koshino K, Dohmae N, Yohda M, Hirose T, Maeda M, Odaka M (2008) J Bioeng Biosci 106:174–179

    Article  CAS  Google Scholar 

  29. Hopmann KH, Guo JD, Himo F (2008) Inorg Chem 46:4850–4856

    Article  Google Scholar 

  30. Arakawa T, Kawano Y, Katayama Y, Nakayama H, Dohmae N, Yohda M, Odaka M (2009) J Am Chem Soc 131:14838–14843

    Article  CAS  PubMed  Google Scholar 

  31. Mitra S, Holz RC (2007) J Biol Chem 282:7397–7404

    Article  CAS  PubMed  Google Scholar 

  32. Miyanaga A, Fushinobu S, Ito K, Shoun H, Wakagi T (2004) Eur J Biochem 271:429–438

    Article  CAS  PubMed  Google Scholar 

  33. Rao S, Holz RC (2008) Biochemistry 47:12057–12064

    Article  CAS  PubMed  Google Scholar 

  34. Nojiri M, Yohda M, Odaka M, Matsushita Y, Tsujimura M, Yoshida T, Dohmae N, Takio K, Endo I (1999) J Biochem (Tokyo) 125:696–704

    Google Scholar 

  35. Takarada H, Kawano Y, Hashimoto K, Nakayama H, Ueda S, Yohda M, Kamiya N, Dohmae N, Maeda M, Odaka M (2006) Biosci Biotechnol Biochem 70:881–889

    Article  CAS  PubMed  Google Scholar 

  36. Tsujimura M, Odaka M, Nagashima S, Yohda M, Endo I (1996) J Biochem (Tokyo) 119:407–413

    Google Scholar 

  37. White A, Handler P, Smith EL, Hill RL, Lehman IR (1978) In: Principles of biochemistry, 6th edn. McGraw-Hill, New York, pp 196–220

  38. Otowinowski Z, Minor W (1997) Methods Enzymol 276:307–326

    Article  Google Scholar 

  39. Vagin A, Teplyakov A (1997) J Appl Crystallogr 30:1022–1024

    Article  CAS  Google Scholar 

  40. CCP4 (Collaborative Computational Project, Number 4) (1994) Acta Crystallogr D Biol Crystallogr 50:760–763

    Article  Google Scholar 

  41. Murshudov GN, Vargin AA, Dodson EJ (1997) Acta Crystallogr Sect D 53:240–255

    Article  CAS  Google Scholar 

  42. Sheldrick GM, Schneider TR (1997) Methods Enzymol 277:319–343

    Article  CAS  PubMed  Google Scholar 

  43. Emsley P, Cowtan K (2004) Acta Crystallogr Sect D 60:2126–2132

    Article  Google Scholar 

  44. Read RJ (1986) Acta Crystallogr Sect A 42:140–149

    Article  Google Scholar 

  45. Piersma SR, Nojiri M, Tsujimura M, Noguchi T, Odaka M, Yohda M, Inoue Y, Endo I (2000) J Inorg Biochem 80:283–288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the beamline assistants at the Photon Factory for data collection at beamlines NW12A and BL5A. This work was supported in part by a Grant-in-Aid for Scientific Research from the Scientific Research (B) KAKENHI 19350080 (to M.O.) and (B) KAKENHI 21350089 (to M.O.). This work was performed with the approval of the Photon Factory Advisory Committee (approval no. 2008G640).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Odaka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamanaka, Y., Hashimoto, K., Ohtaki, A. et al. Kinetic and structural studies on roles of the serine ligand and a strictly conserved tyrosine residue in nitrile hydratase. J Biol Inorg Chem 15, 655–665 (2010). https://doi.org/10.1007/s00775-010-0632-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0632-3

Keywords

Navigation