Skip to main content
Log in

Rhodium(III) and iridium(III) complexes with 1,2-naphthoquinone-1-oximate as a bidentate ligand: synthesis, structure, and biological activity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The synthesis and characterization of three novel iridium(III) complexes and one rhodium(III) complex with 1-nitroso-2-naphthol (3) chelating as a 1,2-naphthoquinone-1-oximato ligand are described. The reaction of μ2-halogenido-bridged dimers [(η5-C5Me5)IrX2]2 [X is Cl (1a), Br (1b), I (1c)] and [(η5-C5Me5)RhCl2]2 (2a) with 3 in CH2Cl2 yields the mononuclear complexes (η5-C5Me5)IrX(η2-C10H6N2O) (4a, 4b, 4c) and (η5-C5Me5)RhCl(η2-C10H6N2O) (5a). All compounds were characterized by their 1H and 13C NMR, IR, and mass spectra, UV/vis spectra were recorded for 4a and 5a. The X-ray structure analyses revealed a pseudo-octahedral “piano-stool” configuration for the metals with bidentate coordination through oximato-N and naphthoquinone-O, forming a nearly planar five-membered metallacycle. The metal complexes 4a and 5a were evaluated in respect to their cytotoxicity and binding affinity toward double-stranded DNA. As determined in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, both exerted a much stronger cytotoxic effect toward HeLa and HL60 cancer cell lines than did cisplatin. The remarkable cytotoxicity of the compounds tested may be attributed to necrosis, rather than to apoptosis, as it is evidenced by the caspase-3/7 activation assay. No clear evidence was found for interaction with double-stranded DNA. The melting experiments showed no significant differences between thermodynamic parameters of intact DNA and DNA incubated with 3, 4a, or 5a, although these derivatives altered DNA recognition by the BamHI restriction enzyme. Therefore, the screened iridium and rhodium complexes 4a and 5a may still be interesting as potential anticancer drugs owing to their high cytotoxicity toward cancer cell lines, whereas they do not modify DNA in a way similar to that of cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fuchs F (1875) Ber Dtsch Chem Ges 8(2):1022–1026

    Article  Google Scholar 

  2. Feigl F (1949) Chemistry of specific selective and sensitive reactions. Academic Press, New York, pp 251–280

    Google Scholar 

  3. Borggaard OK, Christensen HEM, Nielsen TK, Willems M (1982) Analyst 107(1281):1479–1483

    Article  CAS  Google Scholar 

  4. Borggaard OK, Christensen HEM, Lund SP (1984) Analyst 109(9):1179–1182

    Article  CAS  PubMed  Google Scholar 

  5. Mendes PCS, Santelli RE, Gallego M, Valcárcel M (1994) J Anal At Spectrom 9(5):663–666

    Google Scholar 

  6. Zhang Q, Minami H, Inoue S, Atsuya I (2000) Anal Chim Acta 407(1–2):147–153

    Article  CAS  Google Scholar 

  7. Lee S-H, Choi H-S (2003) Bull Korean Chem Soc 24(11):1705–1707

    Article  CAS  Google Scholar 

  8. Novák J, Mleziva J, Eichler J (1984) Angew Makromol Chem 128(1):123–132

    Article  Google Scholar 

  9. Chakroborty KB, Scott G, Yaghmour H (1985) J Appl Polym Sci 30(1):189–203

    Article  CAS  Google Scholar 

  10. McKillop A, Sayer TSB (1976) J Org Chem 41(6):1079–1080

    Article  CAS  Google Scholar 

  11. Buckley RG, Charalambous J, Brain EG (1982) J Chem Soc Perkin Trans 1:1075–1078

    Google Scholar 

  12. Buckley RG, Charalambous J, Kensett MJ, McPartlin M, Mukerjee D, Brain EG, Jenkins J (1983) J Chem Soc Perkin Trans 1:693–697

    Google Scholar 

  13. Barjesteh H, Brain EG, Charalambous J, Gaganatsou P, Thomas TA (1995) J Chem Res Synop 454–454

  14. Saarinen H, Korvenranta J (1975) Acta Chem Scand 29A:409–413

    Article  Google Scholar 

  15. Korvenranta J, Saarinen H (1975) Acta Chem Scand 29A:861–865

    Article  Google Scholar 

  16. Charalambous J, Henrick K, Musa Y, Rees RG, Whiteley RN (1987) Polyhedron 6(6):1509–1512

    Article  CAS  Google Scholar 

  17. Charalambous J, Stoten WC, Henrick K (1989) Polyhedron 8(1):103–107

    Article  CAS  Google Scholar 

  18. Lee KK-H, Wong W-T (1997) J Chem Soc Dalton Trans (17):2987–2996

  19. Das AK, Rueda A, Falvello LR, Peng S-M, Bhattacharya S (1999) Inorg Chem 38(19):4365–4368

    Article  CAS  Google Scholar 

  20. Liu X-X, Wong W-T (2000) Polyhedron 19(1):7–21

    Article  CAS  Google Scholar 

  21. Liu X-X, Wong W-T (2000) Inorg Chim Acta 299(1):16–27

    Article  CAS  Google Scholar 

  22. Liu X-X, Wong W-T (2001) Inorg Chim Acta 312(1–2):231–238

    Article  CAS  Google Scholar 

  23. Krinninger C, Wirth S, Ruiz JCG, Klüfers P, Nöth H, Lorenz I-P (2005) Eur J Inorg Chem 20:4094–4098

    Article  CAS  Google Scholar 

  24. Liu X-X, Wong W-T (2001) Eur J Inorg Chem 2001(2):511–520

    Article  Google Scholar 

  25. Rosenberg B, Van Camp L, Krigas T (1965) Nature 205(4972):698–699

    Article  CAS  PubMed  Google Scholar 

  26. Wong E, Giandomenico CM (1999) Chem Rev 99(9):2451–2466

    Article  CAS  PubMed  Google Scholar 

  27. Clarke MJ, Zhu F, Frasca DR (1999) Chem Rev 99(9):2511–2534

    Article  CAS  PubMed  Google Scholar 

  28. Guo Z, Sadler PJ (1999) Angew Chem Int Ed 38(11):1512–1531

    Article  CAS  Google Scholar 

  29. Allardyce CS, Dorcier A, Scolaro C, Dyson PJ (2005) Appl Organomet Chem 19(1):1–10

    Article  CAS  Google Scholar 

  30. Guo Z, Sadler PJ, Sykes AG (1999) Adv Inorg Chem 49:183–306

    Article  Google Scholar 

  31. Di C, Milacic V, Frezza M, Ping Dou Q (2009) Curr Pharm Des 15(7):777–791

    Article  Google Scholar 

  32. Bruijnincx PCA, Sadler PJ (2008) Curr Opin Chem Biol 12(2):197–206

    Article  CAS  PubMed  Google Scholar 

  33. Dyson PJ, Sava G (2006) Dalton Trans 16:1929–1933

  34. Peacock AFA, Habtemariam A, Fernandez R, Walland V, Fabbiani FPA, Parsons S, Aird RE, Jodrell DI, Sadler PJ (2006) J Am Chem Soc 128(5):1739–1748

    Article  CAS  PubMed  Google Scholar 

  35. Peacock AFA, Habtemariam A, Moggach SA, Prescimone A, Parsons S, Sadler PJ (2007) Inorg Chem 46(10):4049–4059

    Article  CAS  PubMed  Google Scholar 

  36. Hillard E, Vessières A, Le Bideau F, Pla D, zdot, uk, Spera D, Huché M, Jaouen G (2006) ChemMedChem 1(5):551–559

  37. Peacock Anna FA, Sadler Peter J (2008) Chem Asian J 3(11):1890–1899

    Article  CAS  PubMed  Google Scholar 

  38. Pizarro AM, Sadler PJ (2009) Biochimie 91(10):1198–1211

    Article  CAS  PubMed  Google Scholar 

  39. Bruijnincx PCA, Sadler PJ, Rudi van E, Colin DH (2009) Adv Inorg Chem 61:1–62

    Google Scholar 

  40. Allardyce CS, Dyson PJ (2001) Platin Met Rev 45(2):62–69

    CAS  Google Scholar 

  41. Clarke MJ (2003) Coord Chem Rev 236(1–2):209–233

    Article  CAS  Google Scholar 

  42. Habtemariam A, Melchart M, Fernandez R, Parsons S, Oswald IDH, Parkin A, Fabbiani FPA, Davidson JE, Dawson A, Aird RE, Jodrell DI, Sadler PJ (2006) J Med Chem 49(23):6858–6868

    Article  CAS  PubMed  Google Scholar 

  43. Ang WH, Dyson PJ (2006) Eur J Inorg Chem 20:4003–4018

    Article  CAS  Google Scholar 

  44. Yan YK, Melchart M, Habtemariam A, Sadler PJ (2005) Chem Commun 38:4764–4776

    Google Scholar 

  45. Hartinger Christian G, Jakupec Michael A, Zorbas-Seifried S, Groessl M, Egger A, Berger W, Zorbas H, Dyson Paul J, Keppler Bernhard K (2008) Chem Biodivers 5(10):2140–2155

    Article  CAS  PubMed  Google Scholar 

  46. Bratsos I, Jedner S, Gianferrara T, Alessio E (2007) CHIMIA Int J Chem 61:692–697

    Article  CAS  Google Scholar 

  47. Katsaros N, Anagnostopoulou A (2002) Crit Rev Oncol Hematol 42(3):297–308

    Article  CAS  PubMed  Google Scholar 

  48. Medvetz DA, Stakleff KD, Schreiber T, Custer PD, Hindi K, Panzner MJ, Blanco DD, Taschner MJ, Tessier CA, Youngs WJ (2007) J Med Chem 50(7):1703–1706

    Article  CAS  PubMed  Google Scholar 

  49. Loganathan D, Morrison H (2006) Photochem Photobiol 82(1):237–247

    Article  CAS  PubMed  Google Scholar 

  50. Sorasaenee K, Fu PKL, Angeles-Boza AM, Dunbar KR, Turro C (2003) Inorg Chem 42(4):1267–1271

    Article  CAS  PubMed  Google Scholar 

  51. Smith DP, Olmstead MM, Noll BC, Maestre MF, Fish RH (1993) Organometallics 12(3):593–596

    Article  CAS  Google Scholar 

  52. Smith DP, Kohen E, Maestre MF, Fish RH (1993) Inorg Chem 32(19):4119–4122

    Article  CAS  Google Scholar 

  53. Smith DP, Griffin MT, Olmstead MM, Maestre MF, Fish RH (1993) Inorg Chem 32(22):4677–4678

    Article  CAS  Google Scholar 

  54. Smith DP, Baralt E, Morales B, Olmstead MM, Maestre MF, Fish RH (1992) J Am Chem Soc 114(26):10647–10649

    Article  CAS  Google Scholar 

  55. Herebian D, Sheldrick WS (2002) J Chem Soc Dalton Trans 6:966–974

    Google Scholar 

  56. Stodt R, Gencaslan S, Frodl A, Schmidt C, Sheldrick WS (2003) Inorg Chim Acta 355:242–253

    Article  CAS  Google Scholar 

  57. Gençaslan S, Sheldrick WS (2005) Eur J Inorg Chem 2005(19):3840–3849

    Article  CAS  Google Scholar 

  58. Schäfer S, Sheldrick WS (2007) J Organomet Chem 692(6):1300–1309

    Article  CAS  Google Scholar 

  59. Dorcier A, Ang WH, Bolano S, Gonsalvi L, Juillerat-Jeannerat L, Laurenczy G, Peruzzini M, Phillips AD, Zanobini F, Dyson PJ (2006) Organometallics 25(17):4090–4096

    Article  CAS  Google Scholar 

  60. Scharwitz MA, Ott I, Geldmacher Y, Gust R, Sheldrick WS (2008) J Organomet Chem 693(13):2299–2309

    Article  CAS  Google Scholar 

  61. Schäfer S, Ott I, Gust R, Sheldrick WS (2007) Eur J Inorg Chem 2007(19):3034–3046

    Article  CAS  Google Scholar 

  62. Ball RG, Graham WAG, Heinekey DM, Hoyano JK, McMaster AD, Mattson BM, Michel ST (1990) Inorg Chem 29(10):2023–2025

    Article  CAS  Google Scholar 

  63. Gill DS, Maitlis PM (1975) J Organomet Chem 87(3):359–364

    Article  CAS  Google Scholar 

  64. Kang JW, Moseley K, Maitlis PM (1969) J Am Chem Soc 91(22):5970–5977

    Article  CAS  Google Scholar 

  65. Sheldrick GM (1997) SHELX-97: an integrated system for solving and refining crystal structures from diffraction data. University of Göttingen, Germany

  66. Sheldrick GM (2008) Acta Crystallogr Sect A 64(1):112–122

    Article  CAS  Google Scholar 

  67. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) J Clin Invest 52(11):2745–2756

    Article  CAS  PubMed  Google Scholar 

  68. Maszewska M, Leclaire J, Cieslak M, Nawrot B, Okruszek A, Caminade A-M, Majoral J-P (2003) Oligonucleotides 13(4):193–205

    Article  CAS  PubMed  Google Scholar 

  69. Foretic B, Burger N, Hankonyi V (1995) Polyhedron 14(5):605–609

    Article  CAS  Google Scholar 

  70. Krzan A, Crist DR, Horák V (2000) J Mol Struct Theochem 528(1–3):237–244

    Article  CAS  Google Scholar 

  71. Ivanova G, Enchev V (2001) Chem Phys 264(3):235–244

    Article  CAS  Google Scholar 

  72. Gurrieri S, Siracusa G (1971) Inorg Chim Acta 5:650–654

    Article  CAS  Google Scholar 

  73. Burawoy A, Cais M, Chamberlain JT, Liversedge F, Thompson AR (1955) J Chem Soc 3727–3733

  74. Saarinen H, Korvenranta J (1978) Finn Chem Lett 223–226

  75. Farrugia LJ (1997) Ortep-3 for Windows. J Appl Cryst 30:565

    Google Scholar 

  76. Budzisz E, Krajewska U, Rozalski M, Szulawska A, Czyz M, Nawrot B (2004) Eur J Pharmacol 502(1–2):59–65

    Article  CAS  PubMed  Google Scholar 

  77. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cell 91(4):479–489

    Article  CAS  PubMed  Google Scholar 

  78. Jordan P, Carmo-Fonseca M (2000) Cell Mol Life Sci 57(8–9):1229–1235

    Article  CAS  PubMed  Google Scholar 

  79. Richards AD, Rodger A (2007) Chem Soc Rev 36(3):471–483

    Article  CAS  PubMed  Google Scholar 

  80. Zhou L (2009) J Phys Chem B 113(7):2110–2127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the Center for Integrated Protein Science Munich (CIPS, LMU Excellent) is gratefully acknowledged. The biological part of this work was done in the Anticancer Screening Laboratory in the Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies of the Polish Academy of Sciences and was financially supported by the Ministry of Science and Higher Education through the Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, under Decision PBZ-MNiSW-07/I/2007 for the years 2008–2010.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Barbara Nawrot or Ingo-Peter Lorenz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 989 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirth, S., Rohbogner, C.J., Cieslak, M. et al. Rhodium(III) and iridium(III) complexes with 1,2-naphthoquinone-1-oximate as a bidentate ligand: synthesis, structure, and biological activity. J Biol Inorg Chem 15, 429–440 (2010). https://doi.org/10.1007/s00775-009-0615-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0615-4

Keywords

Navigation