Skip to main content
Log in

Antimalarial evaluation of copper(II) nanohybrid solids: inhibition of plasmepsin II, a hemoglobin-degrading malarial aspartic protease from Plasmodium falciparum

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A new class of copper(II) nanohybrid solids, LCu(CH3COO)2 and LCuCl2, have been synthesized and characterized by transmission electron microscopy, dynamic light scattering, and IR spectroscopy, and have been found to be capped by a bis(benzimidazole) diamide ligand (L). The particle sizes of these nanohybrid solids were found to be in the ranges 5–10 and 60–70 nm, respectively. These nanohybrid solids were evaluated for their in vitro antimalarial activity against a chloroquine-sensitive isolate of Plasmodium falciparum (MRC 2). The interactions between these nanohybrid solids and plasmepsin II (an aspartic protease and a plausible novel target for antimalarial drug development), which is believed to be essential for hemoglobin degradation by the parasite, have been assayed by UV–vis spectroscopy and inhibition kinetics using Lineweaver–Burk plots. Our results suggest that these two compounds have antimalarial activities, and the IC50 values (0.025–0.032 μg/ml) are similar to the IC50 value of the standard drug chloroquine used in the bioassay. Lineweaver–Burk plots for inhibition of plasmepsin II by LCu(CH3COO)2 and LCuCl2 show that the inhibition is competitive with respect to the substrate. The inhibition constants of LCu(CH3COO)2 and LCuCl2 were found to be 10 and 13 μM, respectively. The IC50 values for inhibition of plasmepsin II by LCu(CH3COO)2 and LCuCl2 were found to be 14 and 17 μM, respectively. Copper(II) metal capped by a benzimidazole group, which resembles the histidine group of copper proteins (galactose oxidase, β-hydroxylase), could provide a suitable anchoring site on the nanosurface and thus could be useful for inhibition of target enzymes via binding to the S1/S3 pocket of the enzyme hydrophobically. Both copper(II) nanohybrid solids were found to be nontoxic against human hepatocellular carcinoma cells and were highly selective for plasmepsin II versus human cathepsin D. The pivotal mechanism of antimalarial activity of these compounds via plasmepsin II inhibition in the P. falciparum malaria parasite is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. World Health Organization (2008) World Health Organization malaria reports. World Health Organization, Geneva

  2. Greenwood B, Mutabingwa T (2002) Nature 415:670–672

    Article  CAS  PubMed  Google Scholar 

  3. White NJ (1998) Br Med Bull 54:703–715

    CAS  PubMed  Google Scholar 

  4. Ollliaro P, Cattani J, Wirth D (1996) J Am Med Assoc 275(3):230–233

    Article  Google Scholar 

  5. Lew VL, Macdonald L, Ginsburg H, Krugliak M, Tiffert T (2004) Blood Cells Mol Dis 280:353–359

    Article  Google Scholar 

  6. Banerjee R, Liu J, Beatty W, Pelosof L, Klemba M, Goldberg DE (2002) Proc Natl Acad Sci USA 99:990–995

    Article  CAS  PubMed  Google Scholar 

  7. Roenthal PJ, Sijwali PS, Singh A, Shenai BR (2002) Curr Pharm Des 8:1659–1672

    Article  Google Scholar 

  8. Eggleson KK, Duffin KL, Goldberg DE (1999) J Biol Chem 274:32411–32417

    Article  CAS  PubMed  Google Scholar 

  9. Rosenthal PJ (1998) Emerg Infect Dis 4:49–57

    Article  CAS  PubMed  Google Scholar 

  10. Silva AM, Lee AY, Gulnik SV, Majer P, Collins J, Bhat TN, Collins PJ, Cachau RE, Luker KE, Gluzman IY, Francis SE, Oksman A, Goldberg DE, Erickson JW (1996) Proc Natl Acad Sci USA 93:10034–10039

    Article  CAS  PubMed  Google Scholar 

  11. Muthas D, Nöteberg D, Sabnis YA, Hamelink E, Vrang L, Samuelsson B, Karlen A, Hallberg A (2005) Bioorg Med Chem 13:5371–5390

    Article  CAS  PubMed  Google Scholar 

  12. Dahlgren A, Kvarnstrom I, Vrang L, Hamelink E, Hallberg A, Rosenquist A, Samuelson B (2003) Bioorg Med Chem 11:3423–3437

    Article  CAS  PubMed  Google Scholar 

  13. Nezami A, Luque I, Kimura T, Kiso Y, Ernesto F (2002) Biochemistry 41:2273–2280

    Article  CAS  PubMed  Google Scholar 

  14. Ersmark K, Feierberg I, Bjelic S, Hamelink E, Hackett F, Blackman MJ, Hulten J, Samuelsson B, Aqvist J, Hallberg A (2004) J Med Chem 47:110–122

    Article  CAS  PubMed  Google Scholar 

  15. Ocheskey JA, Polyakov VR, Harpstrite SE, Oksman A, Goldberg DE, Worms DP, Sharma V (2003) J Inorg Biochem 93:265–270

    Article  CAS  PubMed  Google Scholar 

  16. Mondhindru A, Fisher JM, Rabinowitz M (1983) Biochem Pharmacol 32:3627–3632

    Article  Google Scholar 

  17. Gokhale NH, Shirisha KJ, Padhey SB, Croft SL, Kendrick HD, Mckee V (2006) Bioorg Med Chem Lett 16:430–432

    Article  CAS  PubMed  Google Scholar 

  18. Gokhale NH, Padhye SB, Billington DC, Rathbone DL, Croft SL, Kendrick HD, Anson CE, Powell AK (2003) Inorg Chim Acta 349:23–29

    Article  CAS  Google Scholar 

  19. Cescon LA, Day AR (1962) J Org Chem 27:581–586

    Article  CAS  Google Scholar 

  20. Singla M, Gupta M, Mathur P, Hundal MS (2008) Transition Met Chem 33:175–182

    Article  CAS  Google Scholar 

  21. Gupta M, Mathur P, Butcher RJ (2001) Inorg Chem 40:878–885

    Article  CAS  PubMed  Google Scholar 

  22. Luisi PL, Straub BE (1984) Reverse micelles. Plenum Press, New York

  23. Upadhyay SK, Tehlan S, Mathur P (2007) Spectrochim Acta 66:347–352

    Article  Google Scholar 

  24. Ahmad T, Ramanujachary KV, Lofland SE, Ganguli AK (2004) J Mater Chem 14:3406–3410

    Article  CAS  Google Scholar 

  25. Jain TK, Roy I, De TK, Maitra A (1998) J Am Chem Soc 120:11092–11095

    Article  CAS  Google Scholar 

  26. Trager W, Jensen JB (1976) Science 193:673–675

    Article  CAS  PubMed  Google Scholar 

  27. Agli MD, Parapini S, Galli G, Vaiana N, Taramelli D, Sparatore A, Liu P, Dunn BM, Bosisio E, Romeo S (2006) J Med Chem 49:7440–7449

    Article  Google Scholar 

  28. Lowry OH, Rosbrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  29. Goldberg DE, Slater AFG, Beavis R, Chait B, Cerami A, Henderson GB (1991) J Exp Med 173:961–969

    Article  CAS  PubMed  Google Scholar 

  30. Hill J, Tyas L, Phylip LH, Kay J, Dunn BM, Berry C (1994) FEBS Lett 352:155–158

    Article  CAS  PubMed  Google Scholar 

  31. Copeland RA (ed) (1996) Enzymes: a practical introduction to structure, mechanism and data analysis. Wiley, New York

  32. Mosmann T (1983) J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  33. Ren H, Grady S, Gammenara D, Heinzen H, Moyna P, Croft S, Kendrick H, Yardley V, Moyna G (2001) Bioorg Med Chem Lett 11:1851–1854

    Article  CAS  PubMed  Google Scholar 

  34. Jiang S, Prigge ST, Wei L, Gao YE, Hudson TH, Gerena L, Dame JB, Kyle DE (2001) Antimicrob Agents Chemother 45(9):2577–2584

    Article  CAS  PubMed  Google Scholar 

  35. Muegge I, Martin Y (1999) J Med Chem 42:791–804

    Article  CAS  PubMed  Google Scholar 

  36. Rosenthal PJ (1995) Exp Parasitol 80:272–281

    Article  CAS  PubMed  Google Scholar 

  37. Dluzewski AR, Rangachari K, Wilson RJM, Gratzer WB (1986) Exp Parasitol 62:416–422

    Article  CAS  PubMed  Google Scholar 

  38. Rosenthal PJ, McKerrow JH, Aikawa M, Nagasawa H, Leech JH (1988) J Clin Invest 82:1560–1566

    Article  CAS  PubMed  Google Scholar 

  39. Vander Jagt DL, Caughey WS, Campos NM, Hunsaker LA, Zanner MA (1989) Prog Clin Biol Res 313:105–118

    CAS  PubMed  Google Scholar 

  40. Bailly E, Jambou R, Savel J, Jaureguiberry G (1992) J Protozool 39:593–599

    CAS  PubMed  Google Scholar 

  41. Asawamahasakda W, Ittarat I, Chang C-C, McElroy P, Meshnick SR (1994) Mol Biochem Parasitol 67:183–191

    Article  CAS  PubMed  Google Scholar 

  42. Tehlan S, Hundal MS, Mathur P (2004) Inorg Chem 43:6589–6595

    Article  CAS  PubMed  Google Scholar 

  43. Sharma A, Eapen A, Subbarao SK (2005) J Biol Chem Tokyo 138:71–78

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Benn M. Dunn (Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA) for helpful discussion and donating the plasmid for proplasmepsin II. We are also thankful to Vineeta Singh and C.R. Pillai, Parasite Bank at NIMR, for help in performing red blood cell parasite inhibition assays. Thanks are also due to Bhanu Arya, Technical Officer, and Poonam Gupta, Technical Assistant, for excellent technical help during the course of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subash Chandra Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohapatra, S.C., Tiwari, H.K., Singla, M. et al. Antimalarial evaluation of copper(II) nanohybrid solids: inhibition of plasmepsin II, a hemoglobin-degrading malarial aspartic protease from Plasmodium falciparum . J Biol Inorg Chem 15, 373–385 (2010). https://doi.org/10.1007/s00775-009-0610-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0610-9

Keywords

Navigation