Skip to main content

Structure at 1.0 Å resolution of a high-potential iron–sulfur protein involved in the aerobic respiratory chain of Rhodothermus marinus

Abstract

The aerobic respiratory chain of the thermohalophilic bacterium Rhodothermus marinus, a nonphotosynthetic organism from the Bacteroidetes/Chlorobi group, contains a high-potential iron–sulfur protein (HiPIP) that transfers electrons from a bc 1 analog complex to a caa 3 oxygen reductase. Here, we describe the crystal structure of the reduced form of R. marinus HiPIP, solved by the single-wavelength anomalous diffraction method, based on the anomalous scattering of the iron atoms from the [4Fe–4S]3+/2+ cluster and refined to 1.0 Å resolution. This is the first structure of a HiPIP isolated from a nonphotosynthetic bacterium involved in an aerobic respiratory chain. The structure shows a similar environment around the cluster as the other HiPIPs from phototrophic bacteria, but reveals several features distinct from those of the other HiPIPs of phototrophic bacteria, such as a different fold of the N-terminal region of the polypeptide due to a disulfide bridge and a ten-residue-long insertion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

HiPIP:

High-potential iron–sulfur protein

RmHip:

Rhodothermus marinus high-potential iron–sulfur protein

SLS:

Swiss Light Source

Tris:

Tris(hydroxymethyl)aminomethane

Rms:

Root mean square

References

  1. Huber C, Wachtershauser G (1998) Science 281:670–672

    Article  CAS  PubMed  Google Scholar 

  2. Beinert H (2000) J Biol Inorg Chem 5:2–15

    Article  CAS  PubMed  Google Scholar 

  3. Yagi T, Matsuno-Yagi A (2003) Biochemistry 42:2266–2274

    Article  CAS  PubMed  Google Scholar 

  4. Kennel SJ, Bartsch RG, Kamen MD (1972) Biophys J 12:882–896

    Article  CAS  PubMed  Google Scholar 

  5. Pereira MM, Antunes AM, Nunes OC, da Costa MS, Teixeira M (1994) FEBS Lett 352:327–330

    Article  CAS  PubMed  Google Scholar 

  6. Pereira MM, Carita JN, Teixeira M (1999) Biochemistry 38:1276–1283

    Article  CAS  PubMed  Google Scholar 

  7. Hochkoeppler A, Kofod P, Zannoni D (1995) FEBS Lett 375:197–200

    Article  CAS  PubMed  Google Scholar 

  8. Klinge S, Hirst J, Maman JD, Krude T, Pellegrini L (2007) Nat Struct Mol Biol 14:875–877

    Article  CAS  PubMed  Google Scholar 

  9. Weiner BE, Huang H, Dattilo BM, Nilges MJ, Fanning E, Chazin WJ (2007) J Biol Chem 282:33444–33451

    Article  CAS  PubMed  Google Scholar 

  10. Hamann N, Mander GJ, Shokes JE, Scott RA, Bennati M, Hedderich R (2007) Biochemistry 46:12875–12885

    Article  CAS  PubMed  Google Scholar 

  11. Pereira PM, Teixeira M, Xavier AV, Louro RO, Pereira IA (2006) Biochemistry 45:10359–10367

    Article  CAS  PubMed  Google Scholar 

  12. Lukianova OA, David SS (2005) Curr Opin Chem Biol 9:145–151. doi:10.1016/j.cbpa.2005.02.006

    Google Scholar 

  13. Meyer TE, Przysiecki CT, Watkins JA, Bhattacharyya A, Simondsen RP, Cusanovich MA, Tollin G (1983) Proc Natl Acad Sci USA 80:6740–6744

    Article  CAS  PubMed  Google Scholar 

  14. Van Driessche G, Vandenberghe I, Devreese B, Samyn B, Meyer TE, Leigh R, Cusanovich MA, Bartsch RG, Fischer U, Van Beeumen JJ (2003) J Mol Evol 57:181–199

    Article  PubMed  Google Scholar 

  15. Santana M, Pereira MM, Elias NP, Soares CM, Teixeira M (2001) J Bacteriol 183:687–699

    Article  CAS  PubMed  Google Scholar 

  16. Ausubel FM, Brent R, Kingstone RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995) Current protocols in molecular biology. Greene Publishing Associates/Wiley Interscience, New York

    Google Scholar 

  17. da Costa PN, Teixeira M, Saraiva LM (2003) FEMS Microbiol Lett 218:385–393

    Article  CAS  PubMed  Google Scholar 

  18. Leslie AGW (1992) Joint CCP4+ESF-EAMCB Newslett Protein Crystallogr 26

  19. Collaborative Computational Project N (1994) Acta Crystallogr D Biol Crystallogr 50:760–763

    Article  Google Scholar 

  20. Uson I, Sheldrick GM (1999) Curr Opin Struct Biol 9:643–648

    Article  CAS  PubMed  Google Scholar 

  21. Sheldrick GM (2003) SHELXC. University of Göttingen, Göttingen

  22. Sheldrick GM (2002) Z Kristallogr 217:644–650

    Article  CAS  Google Scholar 

  23. Morris RJ, Perrakis A, Lamzin VS (2002) Acta Crystallogr D Biol Crystallogr 58:968–975

    Article  PubMed  Google Scholar 

  24. Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  25. Lamzin VS, Wilson KS (1997) Methods Enzymol 277:269–305

    Article  CAS  PubMed  Google Scholar 

  26. Sheldrick GM, Schneider TR (1997) Methods Enzymol 277:319–343

    Article  CAS  PubMed  Google Scholar 

  27. McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ (2005) Acta Crystallogr D Biol Crystallogr 61:458–464

    Article  PubMed  Google Scholar 

  28. Engh RA, Huber R (1991) Acta Crystallogr A 47:392–400

    Article  Google Scholar 

  29. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

  30. Krissinel E, Henrick K (2007) J Mol Biol 372:774–797

    Article  CAS  PubMed  Google Scholar 

  31. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  32. Sali A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  33. DeLano WL (2002) PyMOL. DeLano Scientific, Palo Alto

  34. Tullman-Ercek D, DeLisa MP, Kawarasaki Y, Iranpour P, Ribnicky B, Palmer T, Georgiou G (2007) J Biol Chem 282:8309–8316

    Article  CAS  PubMed  Google Scholar 

  35. Carter CW Jr, Kraut J, Freer ST, Xuong NH, Alden RA, Bartsch RG (1974) J Biol Chem 249:4212–4225

    CAS  PubMed  Google Scholar 

  36. Liu L, Nogi T, Kobayashi M, Nozawa T, Miki K (2002) Acta Crystallogr D Biol Crystallogr 58:1085–1091

    Article  PubMed  Google Scholar 

  37. Kerfeld CA, Salmeen AE, Yeates TO (1998) Biochemistry 37:13911–13917

    Article  CAS  PubMed  Google Scholar 

  38. Benning MM, Meyer TE, Rayment I, Holden HM (1994) Biochemistry 33:2476–2483

    Article  CAS  PubMed  Google Scholar 

  39. Breiter DR, Meyer TE, Rayment I, Holden HM (1991) J Biol Chem 266:18660–18667

    CAS  PubMed  Google Scholar 

  40. Gonzalez A, Benini S, Ciurli S (2003) Acta Crystallogr D Biol Crystallogr 59:1582–1588

    Article  PubMed  Google Scholar 

  41. Rayment I, Wesenberg G, Meyer TE, Cusanovich MA, Holden HM (1992) J Mol Biol 228:672–686

    Article  CAS  PubMed  Google Scholar 

  42. Nouailler M, Bruscella P, Lojou E, Lebrun R, Bonnefoy V, Guerlesquin F (2006) Extremophiles 10:191–198

    Article  CAS  PubMed  Google Scholar 

  43. Frazao C, Aragao D, Coelho R, Leal SS, Gomes CM, Teixeira M, Carrondo MA (2008) FEBS Lett 582:763–767

    Article  CAS  PubMed  Google Scholar 

  44. Beeby M, O’Connor BD, Ryttersgaard C, Boutz DR, Perry LJ, Yeates TO (2005) PLoS Biol 3:e309

    Article  PubMed  Google Scholar 

  45. Backes G, Mino Y, Loehr TM, Meyer TE, Cusanovich MA, Sweeney WV, Adman ET, Sanders-Loehr J (1991) J Am Chem Soc 113:2055–2064

    Article  CAS  Google Scholar 

  46. Adman E, Watenpaugh KD, Jensen LH (1975) Proc Natl Acad Sci USA 72:4854–4858

    Article  CAS  PubMed  Google Scholar 

  47. Jensen GM, Warshel A, Stephens PJ (1994) Biochemistry 33:10911–10924

    Article  CAS  PubMed  Google Scholar 

  48. Babini E, Borsari M, Capozzi F, Eltis LD, Luchinat C (1999) J Biol Inorg Chem 4:692–700

    Article  CAS  PubMed  Google Scholar 

  49. Soriano A, Li D, Bian S, Agarwal A, Cowan JA (1996) Biochemistry 35:12479–12486

    Article  CAS  PubMed  Google Scholar 

  50. Agarwal A, Li D, Cowan JA (1995) Proc Natl Acad Sci USA 92:9440–9444

    Article  CAS  PubMed  Google Scholar 

  51. Stelter M, Melo AM, Pereira MM, Gomes CM, Hreggvidsson GO, Hjorleifsdottir S, Saraiva LM, Teixeira M, Archer M (2008) Biochemistry 47:11953–11963

    Article  CAS  PubMed  Google Scholar 

  52. Srinivasan V, Rajendran C, Sousa FL, Melo AM, Saraiva LM, Pereira MM, Santana M, Teixeira M, Michel H (2005) J Mol Biol 345:1047–1057

    Article  CAS  PubMed  Google Scholar 

  53. Hochkoeppler A, Kofod P, Ferro G, Ciurli S (1995) Arch Biochem Biophys 322:313–318

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Nuno A.M. Félix for excellent technical assistance, to Ana Coelho, from the Mass Spectrometry Service of Instituto de Tecnologia Química e Biológica, and to João Carita for cell growth. We thank Carlos Frazão for advice on high-resolution refinement and the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities. X-ray data collection at SLS was supported by the European Commission under the Sixth Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures, contract no. RII3-CT-2004-506008. This work was supported by Fundação para a Ciência e a Tecnologia (PTDC/BIA-PRO/66833/2006 to M.A., POCTI/BIA-PRO/58608/2004 to M.T., REEQ/336/BIO/05, PTDC/BIA-PRO/67105/2006 to A.M.P.M.). M.S. received a grant from Fundação para a Ciência e a Tecnologia (BPD/24193/2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarida Archer.

Additional information

M. Stelter and A. M. P. Melo contributed equally to this work.

The Rhodothermus marinus high-potential iron–sulfur protein coordinates and structure factors have been deposited in the Protein Data Bank with accession code 3H31.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 69 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stelter, M., Melo, A.M.P., Hreggvidsson, G.O. et al. Structure at 1.0 Å resolution of a high-potential iron–sulfur protein involved in the aerobic respiratory chain of Rhodothermus marinus . J Biol Inorg Chem 15, 303–313 (2010). https://doi.org/10.1007/s00775-009-0603-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0603-8

Keywords

  • High-potential iron–sulfur protein
  • Crystal structure
  • Rhodothermus marinus
  • Electron transfer chain