Skip to main content
Log in

Role of a novel disulfide bridge within the all-beta fold of soluble Rieske proteins

JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Cite this article

Abstract

Rieske proteins and Rieske ferredoxins are present in the three domains of life and are involved in a variety of cellular processes. Despite their functional diversity, these small Fe–S proteins contain a highly conserved all-β fold, which harbors a [2Fe–2S] Rieske center. We have identified a novel subtype of Rieske ferredoxins present in hyperthermophilic archaea, in which a two-cysteine conserved SKTPCX(2–3)C motif is found at the C-terminus. We establish that in the Acidianus ambivalens representative, Rieske ferredoxin 2 (RFd2), these cysteines form a novel disulfide bond within the Rieske fold, which can be selectively broken under mild reducing conditions insufficient to reduce the [2Fe–2S] cluster or affect the secondary structure of the protein, as shown by visible circular dichroism, absorption, and attenuated total reflection Fourier transform IR spectroscopies. RFd2 presents all the EPR, visible absorption, and visible circular dichroism spectroscopic features of the [2Fe–2S] Rieske center. The cluster has a redox potential of +48 mV (25 °C and pH 7) and a pK a of 10.1 ± 0.2. These shift to +77 mV and 8.9 ± 0.3, respectively, upon reduction of the disulfide. RFd2 has a melting temperature near the boiling point of water (T m = 99 °C, pH 7.0), but it becomes destabilized upon disulfide reduction (ΔT m = −9 °C, ΔC m = −0.7 M guanidinium hydrochloride). This example illustrates how the incorporation of an additional structural element such as a disulfide bond in a highly conserved fold such as that of the Rieske domain may fine-tune the protein for a particular function or for increased stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANS:

8-Anilino-1-naphthalenesulfonic acid

ATR FT-IR:

Attenuated total reflection Fourier transform infrared

CD:

Circular dichroism

DTNB:

5,5′-Dithiobis(2-nitrobenzoic acid)

GuHCl:

Guanidinium hydrochloride

RFd2:

Rieske ferredoxin 2

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

TCEP:

Tris(2-carboxyethyl)phosphine hydrochloride

TPTZ:

2,4,6-Tripyridyl-s-triazine

Tris–HCl:

Tris(hydroxymethyl)aminomethane hydrochloride

References

  1. Meyer J (2008) J Biol Inorg Chem 13:157–170

    Article  CAS  PubMed  Google Scholar 

  2. Gao-Sheridan HS, Pershad HR, Armstrong FA, Burgess BK (1998) J Biol Chem 273:5514–5519

    Article  CAS  PubMed  Google Scholar 

  3. Gomes CM, Faria A, Carita JC, Mendes J, Regalla M, Chicau P, Huber H, Stetter KO, Teixeira M (1998) J Biol Inorg Chem 3:449–507

    Article  Google Scholar 

  4. Fujii T, Hata Y, Wakagi T, Tanaka N, Oshima T (1996) Nat Struct Biol 3:834–837

    Article  CAS  PubMed  Google Scholar 

  5. Bönisch H, Schmidt CL, Schäfer G, Ladenstein R (2002) J Mol Biol 319:791–805

    Article  PubMed  Google Scholar 

  6. Meyer J, Clay MD, Johnson MK, Stubna A, Munck E, Higgins C, Wittung-Stafshede P (2002) Biochemistry 41:3096–3108

    Article  CAS  PubMed  Google Scholar 

  7. Kissinger CR, Adman ET, Sieker LC, Jensen LH, LeGall J (1989) FEBS Lett 244:447–450

    Article  CAS  PubMed  Google Scholar 

  8. Kojoh K, Matsuzawa H, Wakagi T (1999) Eur J Biochem 264:85–91

    Article  CAS  PubMed  Google Scholar 

  9. Rocha R, Leal SS, Teixeira VH, Regalla M, Huber H, Baptista AM, Soares CM, Gomes CM (2006) Biochemistry 45:10376–10384

    Article  CAS  PubMed  Google Scholar 

  10. Merbitz-Zahradnik T, Zwicker K, Nett JH, Link TA, Trumpower BL (2003) Biochemistry 42:13637–13645

    Article  CAS  PubMed  Google Scholar 

  11. Schmidt CL, Shaw L (2001) J Bioenerg Biomembr 33:9–26

    Article  CAS  PubMed  Google Scholar 

  12. Colbert CL, Couture MM, Eltis LD, Bolin JT (2000) Structure 8:1267–1278

    Article  CAS  PubMed  Google Scholar 

  13. Denke E, Merbitz-Zahradnik T, Hatzfeld OM, Snyder CH, Link TA, Trumpower BL (1998) J Biol Chem 273:9085–9093

    Article  CAS  PubMed  Google Scholar 

  14. Holton B, Wu X, Tsapin AI, Kramer DM, Malkin R, Kallas T (1996) Biochemistry 35:15485–15493

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt CL (2004) J Bioenerg Biomembr 36:107–113

    Article  CAS  PubMed  Google Scholar 

  16. Kletzin A, Ferreira AS, Hechler T, Bandeiras TM, Teixeira M, Gomes CM (2005) FEBS Lett 579:1020–1026

    Article  CAS  PubMed  Google Scholar 

  17. Link TA (2001) In: Bode W, Cygler V, Messerschmidt A (eds) Handbook of metalloproteins. Wiley, Chichester

  18. Iwasaki T, Imai T, Urushiyama A, Oshima T (1996) J Biol Chem 271:27659–27663

    Article  CAS  PubMed  Google Scholar 

  19. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  20. Katoh K, Toh H (2008) Brief Bioinform 9:286–298

    Article  CAS  PubMed  Google Scholar 

  21. Nicholas KB, Nicholas HBJ, Deerfield DWI (1997) EMBnet.news 4:14

  22. Parry-Smith DJ, Payne AW, Michie AD, Attwood TK (1998) Gene 221:GC57–63

    Google Scholar 

  23. Zillig W, Yeats S, Holz I, Bock A, Rettenberger M, Gropp F, Simon G (1986) Syst Appl Microbiol 8:197–203

    CAS  Google Scholar 

  24. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  25. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  26. Pace CN, Shirley BA, Thomson JE (1990) In: Creighton T (ed) Protein structure—a practical approach. IRL Press, Oxford, pp 311–330

  27. Barth A, Zscherp C (2002) Q Rev Biophys 35:369–430

    Article  CAS  PubMed  Google Scholar 

  28. Fischer DS, Price DC (1964) Clin Chem 10:21–31

    Article  CAS  PubMed  Google Scholar 

  29. Brown EN, Friemann R, Karlsson A, Parales JV, Couture MM, Eltis LD, Ramaswamy S (2008) J Biol Inorg Chem 13:1301–1313

    Article  CAS  PubMed  Google Scholar 

  30. Schmidt CL, Anemuller S, Schafer G (1996) FEBS Lett 388:43–46

    Article  CAS  PubMed  Google Scholar 

  31. Kimura S, Kikuchi A, Senda T, Shiro Y, Fukuda M (2005) Biochem J 388:869–878

    Article  CAS  PubMed  Google Scholar 

  32. Zu Y, Couture MM, Kolling DR, Crofts AR, Eltis LD, Fee JA, Hirst J (2003) Biochemistry 42:12400–12408

    Article  CAS  PubMed  Google Scholar 

  33. Wu S, Skolnick J, Zhang Y (2007) BMC Biol 5:17

    Article  PubMed  Google Scholar 

  34. Link TA (1994) Biochim Biophys Acta 1185:81–84

    Article  CAS  Google Scholar 

  35. Bugg TD, Ramaswamy S (2008) Curr Opin Chem Biol 12:134–140

    Article  CAS  PubMed  Google Scholar 

  36. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) Nucleic Acids Res 36:D281–D288

    Article  CAS  PubMed  Google Scholar 

  37. Beeby M, O’Connor BD, Ryttersgaard C, Boutz DR, Perry LJ, Yeates TO (2005) PLoS Biol 3:e309

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants PTDC/QUI/70101/2006, POCTI/QUI/45758, and POCI/BIO/58465 (to C.M.G.) from the Fundação para a Ciência e Tecnologia (FCT/MCTES), Portugal. H.M.B. (SFRH/BD/31126/2006), S.S.L. (SFRH/BD/18653/2004 and SFRH/BPD/47477/2008/), and V.P. (SFRH/BD/18746/2004) are recipients of fellowships from FCT/MCTES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio M. Gomes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1952 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Botelho, H.M., Leal, S.S., Veith, A. et al. Role of a novel disulfide bridge within the all-beta fold of soluble Rieske proteins. J Biol Inorg Chem 15, 271–281 (2010). https://doi.org/10.1007/s00775-009-0596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0596-3

Keywords

Navigation