Skip to main content
Log in

NMR structural analysis of the soluble domain of ZiaA-ATPase and the basis of selective interactions with copper metallochaperone Atx1

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A Cu(I) metallochaperone, Atx1, interacts with the amino-terminal domain of a Cu(I)-transporting ATPase, PacSN, but not with a domain of related Zn-transporting ATPase, ZiaAN in Synechocystis PCC 6803. This is thought to prevent ZiaAN from acquiring Cu(I), which it binds more tightly than Zn. Solution structures of Atx1, PacSN, and the heterodimer were previously described. Here we report solution structural studies of the ZiaAN soluble domain. Apo-ZiaAN has a typical ferredoxin-like fold followed by an atypical 34 residues of unstructured polypeptide containing a His7 motif. ZiaAN competes with the metallochromic indicator 4-(2-pyridylazo)resorcinol for 1 equiv of Zn, which can be displaced by thiol-modifying p-mercuriphenylsulfonic acid, establishing that a high-affinity site involves thiols of the CXXC motif within the ferredoxin-like fold. A single equivalent of Zn affects nuclear magnetic resonance signals arising from the CXXC motif as well as all seven His residues. The presence of NMR-line broadening in both sites implies that Zn1-ZiaAN undergoes exchange phenomena, consistent with CXXC-bound Zn coincidentally sampling various His ligands. These Zn-dependent dynamic changes could either aid metal transfer or alter intramolecular interactions. No formation of Atx1–Cu(I)–ZiaAN heterodimers was observed, and in the presence of equimolar ZiaAN and PacSN, only Atx1–Cu(I)–PacSN complexes were detected. Residues flanking the CXXC motif of PacSN (R13-ASS20) differ in charge and bulk from those of ZiaAN (D18-KLK25) and make contacts in the Atx1–Cu(I)–PacSN complex. Crucially, swapping these residues flanking the CXXC motifs of ZiaAN and PacSN reciprocally swaps partner choice by Atx1. These few residues of the two ATPases have diverged during evolution to bias Atx1 interactions in favor of PacSN rather than ZiaAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HSQC:

Heteronuclear single quantum coherence

NMR:

Nuclear magnetic resonance

NOE:

Nuclear Overhauser effect

NOESY:

Nuclear Overhauser effect spectroscopy

PAR:

4-(2-Pyridylazo)resorcinol

References

  1. Lutsenko S, Kaplan JH (1995) Biochemistry 34:15607–15613

    Article  PubMed  CAS  Google Scholar 

  2. Solioz M, Vulpe C (1996) Trends Biochem Sci 21:237–241

    PubMed  CAS  Google Scholar 

  3. Nucifora G, Chu L, Misra TK, Silver S (1989) Proc Natl Acad Sci USA 86:3544–3548

    Article  PubMed  CAS  Google Scholar 

  4. Silver S, Phung LT (1996) Annu Rev Microbiol 50:753–789

    Article  PubMed  CAS  Google Scholar 

  5. Gatti D, Mitra B, Rosen BP (2000) J Biol Chem 275:34009–34012

    Article  PubMed  CAS  Google Scholar 

  6. Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, Molteni E, Huffman DL, O’Halloran TV (2002) Genome Res 12:255–271

    Article  PubMed  CAS  Google Scholar 

  7. Rutherford JC, Cavet JS, Robinson NJ (1999) J Biol Chem 274:25827–25832

    Article  PubMed  CAS  Google Scholar 

  8. Williams LE, Mills RF (2005) Trends Plant Sci 10:491–502

    Article  PubMed  CAS  Google Scholar 

  9. Bartee MY, Lutsenko S (2007) Biometals 20:627–637

    Article  PubMed  CAS  Google Scholar 

  10. Argüello JM (2003) J Membr Biol 195:93–108

    Article  PubMed  CAS  Google Scholar 

  11. Mandal AK, Arguello JM (2003) Biochemistry 42:11040–11047

    Article  PubMed  CAS  Google Scholar 

  12. Banci L, Bertini I, Ciofi-Baffoni S, Finney LA, Outten CE, O’Halloran TV (2002) J Mol Biol 323:883–897

    Article  PubMed  CAS  Google Scholar 

  13. Banci L, Bertini I, Ciofi-Baffoni S, Su XC, Miras R, Bal N, Mintz E, Catty P, Shokes JE, Scott RA (2006) J Mol Biol 356:638–650

    Article  PubMed  CAS  Google Scholar 

  14. Liu T, Reyes-Caballero H, Li C, Scott RA, Giedroc DC (2007) Biochemistry 46:11057–11068

    Article  PubMed  CAS  Google Scholar 

  15. Okkeri J, Haltia T (2006) Biochim Biophys Acta 1757:1485–1495

    Article  PubMed  CAS  Google Scholar 

  16. Dutta SJ, Liu J, Hou Z, Mitra B (2006) Biochemistry 45:5923–5931

    Article  PubMed  CAS  Google Scholar 

  17. Liu J, Dutta SJ, Stemmler AJ, Mitra B (2006) Biochemistry 45:763–772

    Article  PubMed  CAS  Google Scholar 

  18. González-Guerrero M, Eren E, Rawat S, Stemmler TL, Argüello JM (2008) J Biol Chem 283:29753–29759

    Article  PubMed  CAS  Google Scholar 

  19. González-Guerrero M, Argüello JM (2008) Proc Natl Acad Sci USA 105:5992–5997

    Article  PubMed  Google Scholar 

  20. Borrelly GP, Rondet SA, Tottey S, Robinson NJ (2004) Mol Microbiol 53:217–227

    Article  PubMed  CAS  Google Scholar 

  21. Thelwell C, Robinson NJ, Turner-Cavet JS (1998) Proc Natl Acad Sci USA 85:10728–10733

    Article  Google Scholar 

  22. Tottey S, Rich PR, Rondet SAM, Robinson NJ (2001) J Biol Chem 276:9999–20004

    Article  Google Scholar 

  23. Tottey S, Rondet SAM, Borrelly GPM, Robinson PJ, Rich PR, Robinson NJ (2002) J Biol Chem 277:5490–5497

    Article  PubMed  CAS  Google Scholar 

  24. Pufahl RA, Singer CP, Peariso KL, Lin SJ, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE, O’Halloran TV (1997) Science 278:853–856

    Article  PubMed  CAS  Google Scholar 

  25. Rosenzweig AC, O’Halloran TV (2000) Curr Opin Chem Biol 4:140–147

    Article  PubMed  CAS  Google Scholar 

  26. Wernimont AK, Huffman DL, Lamb AL, O’Halloran TV, Rosenzweig AC (2000) Nat Struct Biol 7:766–771

    Article  PubMed  CAS  Google Scholar 

  27. Walker JM, Tsivkovskii R, Lutsenko S (2002) J Biol Chem 277:27953–27959

    Article  PubMed  CAS  Google Scholar 

  28. Borrelly GPM, Blindauer CA, Schmid R, Butler CS, Cooper CE, Harvey I, Sadler PJ, Robinson NJ (2004) Biochem J 378:293–297

    Article  PubMed  CAS  Google Scholar 

  29. Banci L, Bertini I, Ciofi-Baffoni S, Su XC, Borrelly GP, Robinson NJ (2004) J Biol Chem 279:27502–27510

    Article  PubMed  CAS  Google Scholar 

  30. Banci L, Bertini I, Ciofi-Baffoni S, Kandias NG, Robinson NJ, Spyroulias GA, Su XC, Tottey S, Vanarotti M (2006) Proc Natl Acad Sci USA 103:8320–8325

    Article  PubMed  CAS  Google Scholar 

  31. Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’Halloran TV, Mondragon A (2003) Science 301:1383–1387

    Article  PubMed  CAS  Google Scholar 

  32. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Science 284:805–808

    Article  PubMed  CAS  Google Scholar 

  33. Arnesano F, Banci L, Bertini I, Cantini F, Ciofi-Baffoni S, Huffman DL, O’Halloran TV (2001) J Biol Chem 276:41365–41376

    Article  PubMed  CAS  Google Scholar 

  34. Beers J, Glerum DM, Tzagoloff A (1997) J Biol Chem 272:33191–33196

    Article  PubMed  CAS  Google Scholar 

  35. Culotta VC, Klomp LW, Strain J, Casareno RL, Krems B, Gitlin JD (1997) J Biol Chem 272:23469–23472

    Article  PubMed  CAS  Google Scholar 

  36. Klomp LW, Lin SJ, Yuan DS, Klausner RD, Culotta VC, Gitlin JD (1997) J Biol Chem 272:9221–9226

    Article  PubMed  CAS  Google Scholar 

  37. Valentine JS, Gralla EB (1997) Science 278:817–818

    Article  PubMed  CAS  Google Scholar 

  38. Carr S, Winge DR (2003) Acc Chem Res 36:309–316

    Article  PubMed  CAS  Google Scholar 

  39. Rosenzweig AC (2001) Acc Chem Res 34:119–128

    Article  PubMed  CAS  Google Scholar 

  40. O’Halloran TV, Finney LA (2003) Science 300:931–936

    Article  PubMed  CAS  Google Scholar 

  41. Banci L, Bertini I, Del Conte R, Markey J, Ruiz-Duenas FJ (2001) Biochemistry 25:15660–15668

    Article  CAS  Google Scholar 

  42. Solioz M, Stoyanov JV (2003) FEMS Microbiol Rev 27:183–195

    Article  PubMed  CAS  Google Scholar 

  43. Keller R (2004) The computer aided resonance assignment tutorial. Cantina, Switzerland

    Google Scholar 

  44. Güntert P, Braun W, Wüthrich K (1991) J Mol Biol 217:517–530

    Article  PubMed  Google Scholar 

  45. Vuister GW, Bax A (1993) J Am Chem Soc 115:7772–7777

    Article  CAS  Google Scholar 

  46. Gagné SM, Tsuda S, Li MX, Chandra M, Smillie LB, Sykes BD (1994) Protein Sci 3:1961–1974

    Article  PubMed  Google Scholar 

  47. Guntert P (2004) Methods Mol Biol 278:353–378

    PubMed  CAS  Google Scholar 

  48. Case DA, Darden TA, Cheatham TE, Simmerling CE, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui P, Beroza GP, Schafmeister CE, Caldwell JW, Ross WS, Kollman PA (2004) AMBER 8, version 8.0. University of California, San Francisco

    Google Scholar 

  49. Vriend G (1990) J Mol Graph 8:52–56

    Article  PubMed  CAS  Google Scholar 

  50. Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) J Biomol NMR 8:477–486

    Article  PubMed  CAS  Google Scholar 

  51. Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Forman-Kay JD, Kay LE (1994) Biochemistry 33:5984–6003

    Article  PubMed  CAS  Google Scholar 

  52. Grzesiek S, Bax A (1993) J Am Chem Soc 115:12593–12594

    Article  CAS  Google Scholar 

  53. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) J Biomol NMR 6:277–293

    Article  PubMed  CAS  Google Scholar 

  54. Peng JW, Wagner G (1992) J Magn Reson 98:308–332

    CAS  Google Scholar 

  55. Lee LK, Rance M, Chazin WJ, Palmer AG (1997) J Biomol NMR 9:287–298

    Article  PubMed  CAS  Google Scholar 

  56. Hwang TL, Mori S, Shaka AJ, Van Zijl PCM (1997) J Am Chem Soc 119:6203–6204

    Article  CAS  Google Scholar 

  57. Tjandra N, Kuboniwa H, Ren H, Bax A (1995) Eur J Biochem 230:1014–1024

    Article  PubMed  CAS  Google Scholar 

  58. Kroenke CD, Loria JP, Lee LK, Rance M, Palmer AG (1998) J Am Chem Soc 120:7905–7915

    Article  CAS  Google Scholar 

  59. Banci L, Bertini I, Ciofi-Baffoni S, Huffman DL, O’Halloran TV (2001) J Biol Chem 276:8415–8426

    Article  PubMed  CAS  Google Scholar 

  60. Arnesano F, Banci L, Bertini I, Huffman DL, O’Halloran TV (2001) Biochemistry 40:1528–1539

    Article  PubMed  CAS  Google Scholar 

  61. Rosenzweig AC, Huffman DL, Hou MY, Wernimont AK, Pufahl RA, O’Halloran TV (1999) Structure 7:605–617

    Article  PubMed  CAS  Google Scholar 

  62. Achila D, Banci L, Bertini I, Bunce J, Ciofi-Baffoni S, Huffman DL (2006) Proc Natl Acad Sci USA 103:5729–5734

    Article  PubMed  CAS  Google Scholar 

  63. Banci L, Bertini I, Ciofi-Baffoni S, Del Conte R, Gonnelli L (2003) Biochemistry 42:1939–1949

    Article  PubMed  CAS  Google Scholar 

  64. VanZile ML, Cosper NJ, Scott RA, Giedroc DP (2000) Biochemistry 39:11818–11829

    Article  PubMed  CAS  Google Scholar 

  65. Dainty SJ, Patterson CJ, Waldron KJ, Robinson NJ (2009) J Biol Inorg Chem (in review)

Download references

Acknowledgments

This work was supported by research grants from the BBSRC (BB/E001688/1) and from the European Commission (“European Network of Research Infrastructures for Providing Access and Technological Advancements in Bio-NMR” contract no. 026145, SPINE II contract no. LSHG-CT-2006-031220 “From Receptor to Gene: Structures of Complexes from Signaling Pathways Linking Immunology, Neurobiology and Cancer,” and Marie Curie host fellowships for early stage research training no. MEST-CT-2004-504391 “NMR in Inorganic Structural Biology”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivano Bertini or Nigel J. Robinson.

Additional information

This article will be printed in the upcoming Journal of Biological Inorganic Chemistry special issue CELL BIOLOGY OF COPPER.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 573 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banci, L., Bertini, I., Ciofi-Baffoni, S. et al. NMR structural analysis of the soluble domain of ZiaA-ATPase and the basis of selective interactions with copper metallochaperone Atx1. J Biol Inorg Chem 15, 87–98 (2010). https://doi.org/10.1007/s00775-009-0568-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0568-7

Keywords

Navigation