Abstract
The quantum chemical cluster approach for modeling enzyme reactions is reviewed. Recent applications have used cluster models much larger than before which have given new modeling insights. One important and rather surprising feature is the fast convergence with cluster size of the energetics of the reactions. Even for reactions with significant charge separation it has in some cases been possible to obtain full convergence in the sense that dielectric cavity effects from outside the cluster do not contribute to any significant extent. Direct comparisons between quantum mechanics (QM)-only and QM/molecular mechanics (MM) calculations for quite large clusters in a case where the results differ significantly have shown that care has to be taken when using the QM/MM approach where there is strong charge polarization. Insights from the methods used, generally hybrid density functional methods, have also led to possibilities to give reasonable error limits for the results. Examples are finally given from the most extensive study using the cluster model, the one of oxygen formation at the oxygen-evolving complex in photosystem II.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Notes
For a recent comprehensive review on QM/MM methods for biological systems see Ref. [2].
References
Siegbahn PEM, Crabtree RH (1997) J Am Chem Soc 119:3103–3113
Senn HM, Thiel W (2007) Top Curr Chem 268:173
Becke AD (1993) J Chem Phys 98:5648–5652
Siegbahn PEM (2006) J Biol Inorg Chem 11:695–701
Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48–55
Siegbahn PEM (2007) C R Chim 10:766–774
Nilsson Lill SO, Siegbahn PEM (2009) Biochemistry 48:1056–1066
Grimme S (2006) J Chem Phys 124:034108
Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397–3406
Piacenza M, Hyla-Krypsin I, Grimme S (2007) J Comput Chem 28:2275–2285
Radon M, Pierloot K (2008) J Phys Chem 112:11824–11832
Harayama S, Rekik M, Ngai K-L, Ornston NJ (1989) Bacteriology 171:6251
Harayama S, Rekik M (1989) J Biol Chem 264:15328
Subramanya HS, Roper DI, Dauter Z, Dodson EJ, Davies GJ, Wilson KS, Wigley DB (1996) Biochemistry 35:792
Taylor AB, Czerwinski RM, Johnson WH Jr, Whitman CP, Hackert ML (1998) Biochemistry 37:14692
Harris TK, Czerwinski RM, Johnson WH Jr, Legler PM, Abeygunawardana C, Massiah MA, Stivers JT, Whitman CP, Mildvan AS (1999) Biochemistry 38:12343
Czerwinski RM, Harris TK, Johnson WH Jr, Legler PM, Stivers JT, Mildvan AS, Whitman CP (1999) Biochemistry 38:12358
Metanis N, Brik A, Dawson PE, Keinan E (2004) J Am Chem Soc 126:12726
Metanis N, Keinan E, Dawson PE (2005) J Am Chem Soc 127:5862
Sevastik R, Himo F (2007) Bioorg Chem 35:444
Barone V, Cossi M (1998) J Phys Chem A 102:1995
Cisneros GA, Liu H, Zhang Y, Yang W (2003) J Am Chem Soc 125:10384
Cisneros GA, Wang M, Silinski P, Fitzgerald MC, Yang W (2004) Biochemistry 43:6885
Cisneros GA, Wang M, Silinski P, Fitzgerald MC, Yang WJ (2006) Phys Chem A 110:700
Nakamura T, Nagasawa T, Yu F, Watanabe I, Yamada H (1994) Appl Environ Microbiol 60:1297
van den Wijngaard AJ, Reuvekamp PTW, Janssen DB (1991) J Bacteriol 173:124
van Hylckama Vlieg JET, Tang L, Lutje Spelberg JH, Smilda T, Poelarends GJ, Bosma T, van Merode AE, Fraaije MW, Janssen DB (2001) J Bacteriol 183:5058
Janssen DB, Majeric-Elenkov M, Hasnoui G, Hauer B, Lutje Spelberg JH (2006) Biochem Soc Trans 34:291
Majeric-Elenkov M, Hauer B, Janssen DB (2006) Adv Synth Catal 348:579
Lutje Spelberg JH, van Hylckama Vlieg JET, Tang L, Janssen DB, Kellogg RM (2001) Org Lett 3:41
Lutje Spelberg JH, Tang L, van Gelder M, Kellogg RM, Janssen DB (2002) Tetrahedron Asym 13:1083
Majeric-Elenkov M, Tang L, Hauer B, Janssen DB (2006) Org Lett 8:4227
Hasnaoui G, Lutje Spelberg JH, de Vries E, Tang L, Hauer B, Janssen DB (2005) Tetrahedron Asym 16:1685
Nakamura T, Nagasawa T, Yu F, Watanabe I, Yamada H (1991) Biochem Biophys Res Commun 180:124
Hopmann KH, Himo FJ (2008) Chem Theor Comput 4:1129
Inoue T, Shiota Y, Yoshizawa K (2008) J Am Chem Soc 130:16890–16897
Siegbahn PEM (2003) J Biol Inorg Chem 8:567–576
Schneboom JC, Lin H, Reuter N, Thiel W, Cohen S, Ogliaro F, Shaik S (2002) J Am Chem Soc 124:8142–8151
Altun A, Shaik S, Thiel W (2006) J Comp Chem 27:1324–1337
Schrödinger (1991–2003) Jaguar 5.5. Schrödinger, Portland
Vreven T, Byun KS, Komaromi I, Dapprich S, Montgomery JA Jr, Morokuma K, Frisch MJ (2006) J Chem Theory Comput 2:815–826
Frisch MJ et al (2003) Gaussian 03, revision B.03. Gaussian, Pittsburgh
Friesner RA (2005) Adv Protein Chem 72:79–104
Riccardi D, Schaefer P, Yang Y, Yu H, Ghosh N, Prat-Resina X, König P, Li G, Xu D, Guo H, Elstner M, Cui Q (2006) J Phys Chem B 110:6458–6469
Senthilkumar K, Mujika JI, Ranaghan KE, Manby FR, Mulholland AJ, Harvey JN (2008) J R Soc Interface 5:S207–S216
Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Science 303:1831–1838
Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Nature 438:1040–1044
Yano J, Kern J, Irrgang K-D, Latimer MJ, Bergmann U, Glatzel P, Pushkar Y, Biesiadka J, Loll B, Sauer K, Messinger J, Zouni A, Yachandra VK (2005) Proc Natl Acad Sci USA 102:12047–12052
Dau H, Grundmeier A, Loja P, Haumann M (2008) Philos Trans R Soc Lond B 363:1237–1244
Siegbahn PEM (2006) Chem Eur J 12:9217–9227
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Siegbahn, P.E.M., Himo, F. Recent developments of the quantum chemical cluster approach for modeling enzyme reactions. J Biol Inorg Chem 14, 643–651 (2009). https://doi.org/10.1007/s00775-009-0511-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00775-009-0511-y