Skip to main content
Log in

A quinazoline-derivative DOTA-type gallium(III) complex for targeting epidermal growth factor receptors: synthesis, characterisation and biological studies

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The novel DOTA-like chelator 1,4,7,10-tetraazacyclododecane-1-{4-[(3-chloro-4-fluorophenyl)amino]quinazoline-6-yl}propionamide-4,7,10-triacetic acid (H3L) was synthesised by alkylation of 1,4,7,10-tetraazacyclododecane-1,4,7-tris(t-butyl acetate) with N-{4-[(3-chloro-4-fluorophenyl)amino]quinazoline-6-yl}-3-bromopropionamide, followed by hydrolysis of the ester groups with trifluoracetic acid. H3L has been fully characterised by multinuclear NMR spectroscopy, mass spectrometry and high-performance liquid chromatography (HPLC). Five protonation constants, log K Hi , of H3L were determined by potentiometry and UV–vis spectrophotometry and the values found are 10.47, 9.18, 5.24, 4.00 and 2.23. These methods, complemented with variable-pH 71Ga NMR studies, allowed us to ascertain the stability constant of the Ga(III) complex of L. GaL has a remarkably high thermodynamic stability constant (log K ML = 24.5). The radioactive complex 67GaL was prepared in high yield and high radiochemical purity. Its HPLC chromatogram is identical to that obtained for the GaL complex prepared at the macroscopic level. At pH 7.4, 67GaL has an overall neutral charge, is highly hydrophilic (log D = −1.02 ± 0.03) and presents high in vitro stability in physiological media and in the presence of an excess of diethylenetriaminepentaethanoic acid . In vitro studies indicated that H3L and GaL do not inhibit the cell growth of epidermal growth factor receptor expressing cell lines, such as A431 cervical carcinoma cells, a result which agrees with the very low cell internalisation found for 67GaL in the same cell line. Biodistribution studies in mice indicated high in vivo stability for 67GaL, a high total excretion rate and a relatively slow blood clearance, in full accordance with its hydrophilic character and the relatively important protein binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Herbst RS (2004) Int J Radiat Oncol Biol Phys 59(2):21–26

    PubMed  CAS  Google Scholar 

  2. Wong RWC, Guillaud L (2004) Cytokine Growth Factor Rev 5:147–156

    Article  Google Scholar 

  3. Mendelsohn J, Baselga J (2003) J Clin Oncol 21(14):2787–2799

    Article  PubMed  CAS  Google Scholar 

  4. Sridhar SS, Seymour L, Shepherd FA (2003) Lancet Oncol 4(7):397–406

    Article  PubMed  CAS  Google Scholar 

  5. Laskin JJ, Sandler AB (2004) Cancer Treat Rev 30:1–17

    Article  PubMed  CAS  Google Scholar 

  6. Cai W, Niu G, Chen X (2008) Eur J Nucl Med Mol Imaging 35:186–208

    Article  PubMed  Google Scholar 

  7. Yu Z, Boggon TJ, Kobayashi S, Jin C, Ma PC, Dowlati A, Kern JA, Tenen DG, Halmos B (2007) Cancer Res 67(21):10417–10427

    Article  PubMed  CAS  Google Scholar 

  8. Bonasera TA, Ortu G, Rozen Y, Krais R, Freedman NM, Chisin R, Gazit A, Levitzki A, Mishani E (2001) Nucl Med Biol 28:359–374

    Article  PubMed  CAS  Google Scholar 

  9. Dissoki S, Laky D, Mishani E (2006) J Labelled Comp Radiopharm 49:533–543

    Article  CAS  Google Scholar 

  10. Johnström P, Fredriksson A, Thorell J-O, Stone-Elander S (1998) J. Labelled Comp Radiopharm 41:623–629

    Article  Google Scholar 

  11. Ben-David I, Rozen Y, Ortu G, Mishani E (2003) Appl Radiat Isot 58:209–217

    Article  PubMed  CAS  Google Scholar 

  12. Mishani E, Abourbeh G, Rozen Y, Jacobson O, Laky D, Ben DI, Levitzki A, Shaul M (2004) Nucl Med Biol 31:469–476

    Article  PubMed  CAS  Google Scholar 

  13. Mishani E, Abourbeh G, Rozen Y, Jacobson O, Dissoki S, Daniel RB, Rozen Y, Shaul M, Levitzki A (2005) J Med Chem 48:5337–5348

    Article  PubMed  CAS  Google Scholar 

  14. Ortu G, Ben-David B, Rozen Y, Freedman NMT, Chisin R, Levitski A, Mishani E (2002) Int J Cancer 101:360–370

    Article  PubMed  CAS  Google Scholar 

  15. Shaul M, Abourbeh G, Jacobson O, Rozen Y, Laky D, Levitzki A, Mishani E (2004) Bioorg Med Chem 12:3421–3429

    Article  PubMed  CAS  Google Scholar 

  16. Mishani E, Abourbeh G (2007) Curr Top Med Chem 7:1755–1772

    Article  PubMed  CAS  Google Scholar 

  17. Breza N, Pató J, Orfi L, Hegymegi-Barakonyi B, Anhegyi PB, Varkondi E, Borbely G, Petak I, Keri G (2008) J Recept Signal Transduct 28(4):361–373

    Article  CAS  Google Scholar 

  18. Fernandes C, Oliveira C, Gano L, Bourkoula A, Pirmettis I, Santos I (2007) Bioorg Med Chem 15(12):3974–3980

    Article  PubMed  CAS  Google Scholar 

  19. Fernandes C, Santos IC, Santos I, Pietzsch H-J, Kunstler J-U, Kraus W, Rey A, Margaritis N, Bourkoula A, Chiotellis A, Paravatou-Petsotas M, Pirmettis I (2008) Dalton Trans 3215–3225

  20. Beeby A, Bushby LM, Maffeo D, Williams JAG (2002) J Chem Soc Dalton Trans 48–54

  21. Irving HM, Miles MG, Pettit LD (1967) Anal Chim Acta 38:475

    Article  CAS  Google Scholar 

  22. Zékány L, Nagypál I (1985) Computational methods for determination of formation constants. Plenum Press, New York, p 291

    Google Scholar 

  23. Troutner DE, Volkert WA, Hoffman TJ, Holmes RA (1984) Int J Appl Radiat Isot 35:467–470

    Article  PubMed  CAS  Google Scholar 

  24. Martell AE, Smith RM (2003) NIST standard reference database 46 (critically selected stability constants of metal complexes), version 7.0

  25. Burgess J (1978) Metal ions in solution. Harwood, Chichester, p 314

    Google Scholar 

  26. Clarke ET, Martell AE (1991) Inorg Chim Acta 190:37–46

    Article  CAS  Google Scholar 

  27. Glickson JD, Pitner TP, Webb J, Gams RA (1975) J Am Chem Soc 97:1679–1683

    Article  CAS  Google Scholar 

  28. Akitt JW, Kettle D (1989) Magn Reson Chem 27:377–379

    Article  CAS  Google Scholar 

  29. Liu S (2008) Adv Drug Deliv Rev 60:1347–1370

    Article  PubMed  CAS  Google Scholar 

  30. Bandoli G, Dolmella A, Tisato F, Porchia M, Refosco F (2008) Coord Chem Rev. doi:10.1016/j.ccr.2007.12.001

  31. Léon-Rodríguez LM, Kovacs Z (2008) Bioconjug Chem 19(2):391–402

    Article  PubMed  Google Scholar 

  32. Heppeler A, Froidevaux S, Mäcke HR, Jermann E, Béhé M, Powell P, Hennig M (1999) Chem Eur J 5(7):1974–1981

    Article  CAS  Google Scholar 

  33. Tanaka K, Fukase K (2008) Org Biomol Chem 6:815–828 and references therein

    Article  PubMed  CAS  Google Scholar 

  34. Velikyan I, Sundberg AL, Lindhe O, Höglund AU, Eriksson O, Werner E, Carlsson J, Bergström M, Långström B, Tolmachev V (2005) J Nucl Med 46:1881–1888

    PubMed  CAS  Google Scholar 

  35. Schmid M, Neumaier B, Vogg ATJ, Wczasek K, Friesen C, Mottaghy FM, Buck AK, Reske SN (2006) Nucl Med Biol 33:359–366

    Article  PubMed  CAS  Google Scholar 

  36. Zhang H, Schuhmacher J, Waser B, Wild D, Eisenhut M, Reubi JC, Maecke HR (2007) Eur J Nucl Med Mol Imaging 34(8):1198–1208

    Article  PubMed  Google Scholar 

  37. Mier W, Hoffend J, Krämer S, Schuhmacher J, Hull WE, Eisenhut M, Haberkorn U (2005) Bioconjug Chem 16:237–240

    Article  PubMed  CAS  Google Scholar 

  38. Dadachova E, Park C, Eberly N, Ma D, Paik CH, Brechbiel MW (2001) Nucl Med Biol 28:695–701

    Article  PubMed  CAS  Google Scholar 

  39. Wang S, Lee RJ, Mathias CJ, Green MA, Low PS (1996) Bioconjug Chem 7:56–62

    Article  PubMed  CAS  Google Scholar 

  40. Goodman and Gillman’s (1996) The pharmacological basis of therapeutics, 7th edn. McGraw-Hill, New York, p 12

    Google Scholar 

Download references

Acknowledgments

This work was partially support by the FCT (POCTI/QUI/57632/2004) and by COST Action D38. R.G. would like to thank the Fundação para a Ciência e Tecnologia for a postdoctoral research grant. We wish to acknowledge Ana Coelho and Joaquim Marçalo from the Laboratório de Espectrometria de Massa at the ITQB-Universidade Nova de Lisboa, Oeiras, Portugal, and from the ITN, Sacavém, Portugal, respectively, for the ESI-MS analysis. We thank Zsolt Baranyai for his help in preparing the Ga(NO3)3 solution. The quadrupole ion trap mass spectrometer was acquired with the support of the Programa Nacional de Reequipamento Científico (contract REDE/15037/REM/2005-ITN) of Fundação para a Ciência e a Tecnologia and is part of RNEM-Rede Nacional de Espectrometria de Massa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Santos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information (PDF 141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, R., Fousková, P., Gano, L. et al. A quinazoline-derivative DOTA-type gallium(III) complex for targeting epidermal growth factor receptors: synthesis, characterisation and biological studies. J Biol Inorg Chem 14, 261–271 (2009). https://doi.org/10.1007/s00775-008-0446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0446-8

Keywords

Navigation