Skip to main content
Log in

Theoretical study of the hydroxylation of phenolates by the Cu2O2(N,N′-dimethylethylenediamine)2 2+ complex

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Tyrosinase catalyzes the ortho hydroxylation of monophenols and the subsequent oxidation of the diphenolic products to the resulting quinones. In efforts to create biomimetic copper complexes that can oxidize C–H bonds, Stack and coworkers recently reported a synthetic μ-η22-peroxodicopper(II)(DBED)2 complex (DBED is N,N′-di-tert-butylethylenediamine), which rapidly hydroxylates phenolates. A reactive intermediate consistent with a bis-μ-oxo-dicopper(III)-phenolate complex, with the O–O bond fully cleaved, is observed experimentally. Overall, the evidence for sequential O–O bond cleavage and C–O bond formation in this synthetic complex suggests an alternative mechanism to the concerted or late-stage O–O bond scission generally accepted for the phenol hydroxylation reaction performed by tyrosinase. In this work, the reaction mechanism of this peroxodicopper(II) complex was studied with hybrid density functional methods by replacing DBED in the μ-η22-peroxodicopper(II)(DBED)2 complex by N,N′-dimethylethylenediamine ligands to reduce the computational costs. The reaction mechanism obtained is compared with the existing proposals for the catalytic ortho hydroxylation of monophenol and the subsequent oxidation of the diphenolic product to the resulting quinone with the aim of gaining some understanding about the copper-promoted oxidation processes mediated by 2:1 Cu(I)O2-derived species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 1
Scheme 7
Fig. 2
Scheme 8
Fig. 3
Fig. 4
Scheme 9
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2605

    Article  PubMed  CAS  Google Scholar 

  2. Solomon EI, Baldwin MJ, Lowery MD (1992) Chem Rev 92:521–542

    Article  CAS  Google Scholar 

  3. Oetting WS (2000) Pigment Cell Res 13:320–325

    Article  PubMed  CAS  Google Scholar 

  4. Xu YM, Stokes AH, Roskoski R, Vrana KE (1998) J Neurosci Res 54:691–697

    Article  PubMed  CAS  Google Scholar 

  5. Asanuma M, Miyazaki I, Ogawa N (2003) Neurotox Res 5:165–176

    Article  PubMed  Google Scholar 

  6. Parvez S, Kang M, Chung HS, Bae H (2007) Phytother Res 21:805–816

    Article  PubMed  CAS  Google Scholar 

  7. de Faria RO, Moure VR, Amazonas M, Krieger N, Mitchell DA (2007) Food Technol Biotechnol 45:287–294

    Google Scholar 

  8. Sánchez-Ferrer A, Rodríguez-López JN, García-Cánovas F, García-Carmona F (1995) Biochim Biophys Acta Protein Struct Mol Enzymol 1247:1–11

    Google Scholar 

  9. Wilcox DE, Porras AG, Hwang YT, Lerch K, Winkler ME, Solomon EI (1985) J Am Chem Soc 107:4015–4027

    Article  CAS  Google Scholar 

  10. Siegbahn PEM (2003) J Biol Inorg Chem 8:567–576

    PubMed  CAS  Google Scholar 

  11. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) J Biol Chem 281:8981–8990

    Article  PubMed  CAS  Google Scholar 

  12. Ross PK, Solomon EI (1990) J Am Chem Soc 112:5871–5872

    Article  CAS  Google Scholar 

  13. Ross PK, Solomon EI (1991) J Am Chem Soc 113:3246–3259

    Article  CAS  Google Scholar 

  14. Baldwin MJ, Root DE, Pate JE, Fujisawa K, Kitajima N, Solomon EI (1992) J Am Chem Soc 114:10421–10431

    Article  CAS  Google Scholar 

  15. Eickman NC, Solomon EI, Larrabee JA, Spiro TG, Lerch K (1978) J Am Chem Soc 100:6529–6531

    Article  CAS  Google Scholar 

  16. Lewis EA, Tolman WB (2004) Chem Rev 104:1047–1076

    Article  PubMed  CAS  Google Scholar 

  17. Hatcher LQ, Karlin KD (2004) J Biol Inorg Chem 9:669–683

    Article  PubMed  CAS  Google Scholar 

  18. Hatcher LQ, Karlin KD (2006) Adv Inorg Chem Bioinorg Stud 58:131–184

    Article  CAS  Google Scholar 

  19. Costas M, Ribas X, Poater A, López Balvuena JM, Xifra R, Company A, Duran M, Solà M, Llobet A, Corbella M, Usón MA, Mahía J, Solans X, Shan X, Benet-Buchholz J (2006) Inorg Chem 45:3569–3581

    Article  PubMed  CAS  Google Scholar 

  20. Ribas X, Xifra R, Parella T, Poater A, Solà M, Llobet A (2006) Angew Chem Int Ed 45:2941–2944

    Article  CAS  Google Scholar 

  21. Brackman W, Havinga E (1955) Recl Trav Chim Pays Bas 74:1021–1039

    CAS  Google Scholar 

  22. Brackman W, Havinga E (1955) Recl Trav Chim Pays Bas 74:1070–1080

    CAS  Google Scholar 

  23. Brackman W, Havinga E (1955) Recl Trav Chim Pays Bas 74:1100–1106

    CAS  Google Scholar 

  24. Brackman W, Havinga E (1955) Recl Trav Chim Pays Bas 74:1107–1118

    CAS  Google Scholar 

  25. Brackman W, Havinga E (1955) Recl Trav Chim Pays Bas 74:937–955

    CAS  Google Scholar 

  26. Karlin KD, Cruse RW, Gultneh Y, Hayes JC, Zubieta J (1984) J Am Chem Soc 106:3372–3374

    Article  CAS  Google Scholar 

  27. Nasir MS, Cohen BI, Karlin KD (1992) J Am Chem Soc 114:2482–2494

    Article  CAS  Google Scholar 

  28. Karlin KD, Nasir MS, Cohen BI, Cruse RW, Kaderli S, Zuberbuhler AD (1994) J Am Chem Soc 116:1324–1336

    Article  CAS  Google Scholar 

  29. Pidcock E, Obias HV, Zhang CX, Karlin KD, Solomon EI (1998) J Am Chem Soc 120:7841–7847

    Article  CAS  Google Scholar 

  30. Palavicini S, Granata A, Monzani E, Casella L (2005) J Am Chem Soc 127:18031–18036

    Article  PubMed  CAS  Google Scholar 

  31. Mirica LM, Vance M, Rudd DJ, Hedman B, Hodgson KO, Solomon EI, Stack TDP (2005) Science 308:1890–1892

    Article  PubMed  CAS  Google Scholar 

  32. Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013–1045

    Article  PubMed  CAS  Google Scholar 

  33. Que L, Tolman WB (2002) Angew Chem Int Ed 41:1114–1137

    Article  CAS  Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  35. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  36. Schrödinger (2003) Jaguar 5.5. Schrödinger, Portland

  37. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski G, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian, Pittsburgh

  39. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  40. Woon DE, Dunning TH (1994) J Chem Phys 100:2975–2988

    Article  CAS  Google Scholar 

  41. Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard WA, Honig B (1994) J Am Chem Soc 116:11875–11882

    Article  CAS  Google Scholar 

  42. Marten B, Kim K, Cortis C, Friesner RA, Murphy RB, Ringnalda MN, Sitkoff D, Honig B (1996) J Phys Chem 100:11775–11788

    Article  CAS  Google Scholar 

  43. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (2000) J Chem Phys 112:7374–7383

    Article  CAS  Google Scholar 

  44. Siegbahn PEM, Blomberg MRA (1999) Annu Rev Phys Chem 50:221–249

    Article  PubMed  CAS  Google Scholar 

  45. Salomon O, Reiher M, Hess BA (2002) J Chem Phys 117:4729–4737

    Article  CAS  Google Scholar 

  46. Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48–55

    CAS  Google Scholar 

  47. Cramer CJ, Tolman WB (2007) Acc Chem Res 40:601–608

    Article  PubMed  CAS  Google Scholar 

  48. Lewin JL, Heppner DE, Cramer CJ (2007) J Biol Inorg Chem 12:1221–1234

    Article  PubMed  CAS  Google Scholar 

  49. Cramer CJ, Kinal A, Wloch M, Piecuch P, Gagliardi L (2006) J Phys Chem A 110:11557–11568

    Article  PubMed  CAS  Google Scholar 

  50. Cramer CJ, Kinal A, Wloch M, Piecuch P, Gagliardi L (2007) J Phys Chem A 111:4871

    Google Scholar 

  51. Siegbahn PEM (2003) J Biol Inorg Chem 8:577–585

    PubMed  CAS  Google Scholar 

  52. Cramer CJ, Wloch M, Piecuch P, Puzzarini C, Gagliardi L (2006) J Phys Chem A 110:1991–2004

    Article  PubMed  CAS  Google Scholar 

  53. Malmqvist PA, Pierloot K, Shahi ARM, Cramer CJ, Gagliardi L (2008) J Chem Phys 128:204109–204110

    Article  PubMed  CAS  Google Scholar 

  54. Gherman B, Cramer C (2008) Coord Chem Rev. doi:10.1016/j.ccr.2007.11.018

  55. Mirica L (2005) PhD thesis, Standford University. Available via the ProQuest database, UMI # 3162369

  56. Mirica LM, Rudd DJ, Vance MA, Solomon EI, Hodgson KO, Hedman B, Stack TDP (2006) J Am Chem Soc 128:2654–2665

    Article  PubMed  CAS  Google Scholar 

  57. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  PubMed  CAS  Google Scholar 

  58. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  59. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  60. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  61. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  62. Hertwig RH, Koch W (1997) Chem Phys Lett 268:345–351

    Article  CAS  Google Scholar 

  63. Gherman BF, Tolman WB, Cramer CJ (2006) J Comput Chem 27:1950–1961

    Article  PubMed  CAS  Google Scholar 

  64. Burke K, Ernzerhof M, Perdew JP (1997) Chem Phys Lett 265:115–120

    Article  CAS  Google Scholar 

  65. Becke AD (1996) J Chem Phys 104:1040–1046

    Article  CAS  Google Scholar 

  66. Atkins P, De Paula J (2006) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  67. Mahadevan V, Henson MJ, Solomon EI, Stack TDP (2000) J Am Chem Soc 122:10249–10250

    Article  CAS  Google Scholar 

  68. Hatcher LQ, Vance MA, Sarjeant AAN, Solomon EI, Karlin KD (2006) Inorg Chem 45:3004–3013

    Article  PubMed  CAS  Google Scholar 

  69. Itoh S, Taki M, Nakao H, Holland PL, Tolman WB, Que L, Fukuzumi S (2000) Angew Chem Int Ed 39:398–400

    Article  CAS  Google Scholar 

  70. Naka H, Kondo Y, Usui S, Hashimoto Y, Uchiyama M (2007) Adv Synth Catal 349:595–600

    Article  CAS  Google Scholar 

  71. Himmelwright RS, Eickman NC, Lubien CD, Lerch K, Solomon EI (1980) J Am Chem Soc 102:7339–7344

    Article  CAS  Google Scholar 

  72. Winkler ME, Lerch K, Solomon EI (1981) J Am Chem Soc 103:7001–7003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial help was furnished by the Spanish Ministerio de Educación y Ciencia (MEC) projects no. CTQ2005-08797-C02-01/BQU and CTQ2008-03077/BQU and by the Catalan Departament d’Universitats, Recerca i Societat de la Informació (DURSI) of the Generalitat de Catalunya project no. 2005SGR-00238. We thank Miquel Costas for valuable discussions and the reviewers for helpful comments. M.G. thanks the Spanish MEC for a Ph.D. grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miquel Solà or Per E. M. Siegbahn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information (PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güell, M., Luis, J.M., Solà, M. et al. Theoretical study of the hydroxylation of phenolates by the Cu2O2(N,N′-dimethylethylenediamine)2 2+ complex. J Biol Inorg Chem 14, 229–242 (2009). https://doi.org/10.1007/s00775-008-0443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0443-y

Keywords

Navigation