Skip to main content
Log in

Identifying protein interactions with metal-modified DNA using microarray technology

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Protein microarrays have been used extensively to identify protein–protein interactions; however, this technology has not been widely applied to protein–DNA interactions. In particular, this work demonstrates the utility of this technique for rapidly identifying interactions of proteins with metal-modified DNA. Protein macroarray experiments were carried out with high mobility group protein 1 (HMG-1) and cisplatin- and chromium-modified 50-mer oligonucleotides to demonstrate “proof of principle.” Commercially available protein microarrays containing many different classes of human proteins were then employed to search for additional interactions with cisplatin-modified DNA. The results of the microarray experiments confirmed some known interactions and, more importantly, identified many novel protein interactions, demonstrating the utility of this method as a rapid, high-throughput technique to discover proteins that interact with metal-modified DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BCCP:

Biotin carboxyl carrier protein

CoA:

Coenzyme A

GST:

Glutathione S-transferase

HEPES:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

HMG-1:

High mobility group protein 1

PBS:

Phosphate-buffered saline

TAMRA:

Carboxytetramethylrhodamine

XPA:

Xeroderma pigmentosum A complementing protein

ZNF143:

Zinc finger factor 143

References

  1. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498

    Article  PubMed  CAS  Google Scholar 

  2. Salnikow K, Zhitkovich A (2008) Chem Res Toxicol 21:28–44

    Article  PubMed  Google Scholar 

  3. Predki PF (2004) Curr Opin Chem Biol 8:8–13

    Article  PubMed  CAS  Google Scholar 

  4. Hultschig C, Kreutzberger J, Seitz H, Konthur Z, Büssow K, Lehrach H (2006) Curr Opin Chem Biol 10:4–10

    Article  PubMed  CAS  Google Scholar 

  5. Hall DA, Ptacek J, Snyder M (2007) Mech Ageing Dev 128:161–167

    Article  PubMed  CAS  Google Scholar 

  6. Ge H (2000) Nucleic Acids Res 28:e3

    Article  PubMed  CAS  Google Scholar 

  7. Snapyan M, Lecocq M, Guevel L, Arnaud M-C, Ghochikyan A, Sakanyan V (2003) Proteomics 3:647–657

    Article  PubMed  CAS  Google Scholar 

  8. Kersten B, Possling A, Blaesing F, Mirgorodskaya E, Gobom J, Seitz H (2004) Anal Biochem 331:303–313

    Article  PubMed  CAS  Google Scholar 

  9. Ho S-W, Jona G, Chen CTL, Johnston M, Snyder M (2006) Proc Natl Acad Sci USA 103:9940–9945

    Article  PubMed  CAS  Google Scholar 

  10. Hall DA, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M (2004) Science 306:482–484

    Article  PubMed  CAS  Google Scholar 

  11. Boutell JM, Hart DJ, Godber BLJ, Kozlowski RZ, Blackburn JM (2004) Proteomics 4:1950–1958

    Article  PubMed  CAS  Google Scholar 

  12. Pil PM, Lippard SJ (1992) Science 256:234–237

    Article  PubMed  CAS  Google Scholar 

  13. Wang JF, Bashir M, Engelsberg BN, Witmer C, Rozmiarek H, Billings PC (1997) Carcinogenesis 18:371–375

    Article  PubMed  CAS  Google Scholar 

  14. Jamieson ER, Jacobson MP, Barnes CM, Chow CS, Lippard SJ (1999) J Biol Chem 274:12346–12354

    Article  PubMed  CAS  Google Scholar 

  15. Jamieson ER, Lippard SJ (2000) Biochemistry 39:8426–8438

    Article  PubMed  CAS  Google Scholar 

  16. Zhitkovich A, Voitkun V, Costa M (1996) Biochemistry 35:7275–7282

    Article  PubMed  CAS  Google Scholar 

  17. Quievryn G, Messer J, Zhitkovich A (2002) Biochemistry 41:3156–3167

    Article  PubMed  CAS  Google Scholar 

  18. Invitrogen (2005) ProtoArray Prospector v.3.1 user guide

  19. Strange RC, Spiteri MA, Ramachandran S, Fryer AA (2001) Mutat Res 482:21–26

    PubMed  CAS  Google Scholar 

  20. Satoh J-i, Nanri Y, Yamamura T (2006) J Neurosci Methods 152:278–288

    Article  PubMed  CAS  Google Scholar 

  21. Invitrogen (2005) ProtoArray human protein microarray instruction manual

  22. Horton NJ, personal communication

  23. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  24. Diacovich L, Mitchell DL, Pham H, Gago G, Melgar MM, Khosla C, Gramajo H, Tsai S-C (2004) Biochemistry 43:14027–14034

    Article  PubMed  CAS  Google Scholar 

  25. Weiss E, Chatellier J, Orfanoudakis G (1994) Protein Expr Purif 5:509–517

    Article  PubMed  CAS  Google Scholar 

  26. Invitrogen Protein Array Center, personal communication

  27. Yaneva J, Leuba S, van Holde K, Zlatavova J (1997) Proc Natl Acad Sci USA 94:13448–13451

    Article  PubMed  CAS  Google Scholar 

  28. Jones CJ, Wood RD (1993) Biochemistry 32:12096–12104

    Article  PubMed  CAS  Google Scholar 

  29. Asahina H, Kuraoka I, Shirakawa M, Morita EH, Miura N, Miyamoto I, Ohtsuka E, Okada Y, Tanaka K (1994) Mutat Res 315:229–237

    PubMed  CAS  Google Scholar 

  30. Kuraoka I, Morita EH, Saijo M, Matsuda T, Morikawa K, Shirakawa M, Tanaka K (1996) Mutat Res 362:87–95

    PubMed  Google Scholar 

  31. Torigoe T, Izumi H, Ishiguchi H, Yoshida Y, Tanabe M, Yoshida T, Igarashi T, Niina I, Wakasugi T, Imaizumi T, Momii Y, Kohno K (2005) Curr Med Chem Anticancer Agents 5:15–27

    Article  PubMed  CAS  Google Scholar 

  32. Ishiguchi H, Izumi H, Torigoe T, Yoshida Y, Kubota H, Tsuji S, Kohno K (2004) Int J Cancer 111:900–909

    Article  PubMed  CAS  Google Scholar 

  33. Marumoto T, Zhang D, Saya H (2005) Nat Rev 5:42–50

    CAS  Google Scholar 

  34. Carmena M, Earnshaw WC (2003) Nat Rev 4:842–854

    Article  CAS  Google Scholar 

  35. Keen N, Taylor S (2004) Nat Rev Cancer 4:927–936

    Article  PubMed  CAS  Google Scholar 

  36. Yang H, Ou CC, Feldman RI, Nicosia SV, Kruk PA, Cheng JQ (2004) Cancer Res 64:463–467

    Article  PubMed  CAS  Google Scholar 

  37. Österlund C, Töhönen V, Forslund KÖ, Nordqvist K (2000) Cancer Res 60:1054–1061

    PubMed  Google Scholar 

Download references

Acknowledgments

Mass-spectral data were obtained by Steve Eyles at the University of Massachusetts Mass Spectrometry Facility, which is supported, in part, by the National Science Foundation. The authors thank Adam Hall (Smith College), Scott Edmands (Smith College), Charles Amass (Smith College), and the Smith College Center for Molecular Biology for access to and assistance with instrumentation; Nicholas Horton (Smith College), Gregory Michaud (Invitrogen), Peter Kraus (Invitrogen), and Jonathan Dordick (RPI) for helpful discussions; and Kim Bure (Invitrogen) and Tamara McLeod (Invitrogen) for assistance in obtaining ProtoArray™ slides. Funding for this work was provided by Smith College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth R. Jamieson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stansfield, H.E., Kulczewski, B.P., Lybrand, K.E. et al. Identifying protein interactions with metal-modified DNA using microarray technology. J Biol Inorg Chem 14, 193–199 (2009). https://doi.org/10.1007/s00775-008-0437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0437-9

Keywords

Navigation