Skip to main content
Log in

Sweetening ruthenium and osmium: organometallic arene complexes containing aspartame

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The novel organometallic sandwich complexes [(η6-p-cymene)Ru(η6-aspartame)](OTf)2 (1) (OTf = trifluoromethanesulfonate) and [(η6-p-cymene)Os(η6-aspartame)](OTf)2 (2) incorporating the artificial sweetener aspartame have been synthesised and characterised. A number of properties of aspartame were found to be altered on binding to either metal. The pK a values of both the carboxyl and the amino groups of aspartame are lowered by between 0.35 and 0.57 pH units, causing partial deprotonation of the amino group at pH 7.4 (physiological pH). The rate of degradation of aspartame to 3,6-dioxo-5-phenylmethylpiperazine acetic acid (diketopiperazine) increased over threefold from 0.12 to 0.36 h−1 for 1, and to 0.43 h−1 for 2. Furthermore, the reduction potential of the ligand shifted from −1.133 to −0.619 V for 2. For the ruthenium complex 1 the process occurred in two steps, the first (at −0.38 V) within a biologically accessible range. This facilitates reactions with biological reductants such as ascorbate. Binding to and activation of the sweet taste receptor was not observed for these metal complexes up to concentrations of 1 mM. The factors which affect the ability of metal-bound aspartame to interact with the receptor site are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yan YK, Melchart M, Habtemariam A, Sadler PJ (2005) Chem Commun 38:4764–4776

    Article  Google Scholar 

  2. Vessieres A, Top S, Beck W, Hillard E, Jaouen G (2006) Dalton Trans 4:529–541

    Article  PubMed  Google Scholar 

  3. Severin K, Bergs R, Beck W (1998) Angew Chem Int Ed 37:1635–1654

    CAS  Google Scholar 

  4. Sheldrick WS, Heeb S (1989) J Organomet Chem 377:357–366

    Article  CAS  Google Scholar 

  5. Stodt R, Gencaslan S, Frodl A, Schmidt C, Sheldrick WS (2003) Inorg Chim Acta 355:242–253

    Article  CAS  Google Scholar 

  6. Schluter A, Bieber K, Sheldrick WS (2002) Inorg Chim Acta 340:35–43

    Article  CAS  Google Scholar 

  7. Janetka JW, Rich DH (1995) J Am Chem Soc 117:10585–10586

    Article  CAS  Google Scholar 

  8. Pearson AJ, Lee K (1994) J Org Chem 59:2304–2313

    Article  CAS  Google Scholar 

  9. Stodt R, Gencaslan S, Muller IM, Sheldrick WS (2003) Eur J Inorg Chem 10:1873–1882

    Article  Google Scholar 

  10. Wolff JM, Sheldrick WS (1997) J Organomet Chem 531:141–149

    Article  CAS  Google Scholar 

  11. Butchko HH, Stargel WW, Comer CP, Mayhew DA, Andress SE (2001) Food Sci Tech 112:41–61

    CAS  Google Scholar 

  12. Hooper NM, Hesp RJ, Tieku S (1994) Biochem J 298:635–639

    PubMed  CAS  Google Scholar 

  13. Langguth P, Alder R, Merkle HP (1991) Pharmazie 46:188–192

    CAS  Google Scholar 

  14. Tancredi T, Pastore A, Salvadori S, Esposito V, Temussi PA (2004) Eur J Biochem 271:2231–2240

    Article  PubMed  CAS  Google Scholar 

  15. Cavicchioli M, Massabni AC, Da Costa Ferreira AM, Castellano EE, Crespi MS (2005) Inorg Chim Acta 358:4431–4436

    Article  CAS  Google Scholar 

  16. Cakir S, Coskun E, Bicer E, Cakir O (2003) Carbohydr Res 338:1217–1222

    Article  PubMed  CAS  Google Scholar 

  17. Peacock AFA, Habtemariam A, Fernandez R, Walland V, Fabbiani FPA, Parsons S, Aird RE, Jodrell DI, Sadler PJ (2006) J Am Chem Soc 128:1739–1748

    Article  PubMed  CAS  Google Scholar 

  18. Bennett MA, Smith AK (1974) J Chem Soc Dalton Trans 2:233–241

    Article  Google Scholar 

  19. Hwang T-L, Shaka AJ (1995) J Magn Reson A 112:275–279

    Article  CAS  Google Scholar 

  20. Origin (2006) Int 7.5 Ed. OriginLab Corporation, Northampton

  21. Krezel A, Bal W (2004) J Inorg Biochem 98:161–166

    Article  PubMed  CAS  Google Scholar 

  22. Ueda T, Ugawa S, Yamamura H, Imaizumi Y, Shimada S (2003) J Neurosci 23:7376–7380

    PubMed  CAS  Google Scholar 

  23. Winnig M, Bufe B, Meyerhof W (2005) BMC Neurosci 6:22

    Article  PubMed  Google Scholar 

  24. Pattanaargson S, Chuapradit C, Srisukphonraruk S (2001) J Food Sci 66:808–809

    Article  CAS  Google Scholar 

  25. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley

    Google Scholar 

  26. Suravajjala S, Polam JR, Porter LC (1993) J Organomet Chem 461:201–205

    Article  CAS  Google Scholar 

  27. Porter LC, Bodige S, Selnau HE Jr, Murray HH, McConnachie JM (1995) Organometallics 14:4222–4227

    Article  CAS  Google Scholar 

  28. Freedman DA, Magneson DJ, Mann KR (1995) Inorg Chem 34:2617–2624

    Article  CAS  Google Scholar 

  29. Grotjahn DB, Joubran C, Combs D, Brune DC (1998) J Am Chem Soc 120:11814–11815

    Article  CAS  Google Scholar 

  30. Porter LC, Polam JR, Bodige S (1995) Inorg Chem 34:998–1001

    Article  CAS  Google Scholar 

  31. Suravajjala S, Polam JR, Porter LC (1994) Organometallics 13:37–42

    Article  CAS  Google Scholar 

  32. Fernandez R, Melchart M, Habtemariam A, Parsons S, Sadler PJ (2004) Chem Eur J 10:5173–5179

    Article  CAS  Google Scholar 

  33. Wang F, Chen H, Parsons S, Oswald IDH, Davidson JE, Sadler PJ (2003) Chem Eur J 9:5810–5820

    Article  CAS  Google Scholar 

  34. Sabah S, Scriba GKE (1998) J Pharm Biomed Anal 16:1089–1096

    Article  PubMed  CAS  Google Scholar 

  35. Pattanaargson S, Sanchavanakit C (2000) Rapid Commun Mass Spectrom 14:987–993

    Article  PubMed  CAS  Google Scholar 

  36. Angelici RJ, Zhu B, Fedi S, Laschi F, Zanello P (2007) Inorg Chem 46:10901–10906

    Article  PubMed  CAS  Google Scholar 

  37. Pierce DT, Geiger WE (1992) J Am Chem Soc 114:6063–6073

    Article  CAS  Google Scholar 

  38. Volcheck WM, Tocher DA, Geiger WE (2007) J Organomet Chem 692:3300–3305

    Article  CAS  Google Scholar 

  39. Greef R, Peat R, Peter LM, Pletcher D, Robinson J (1985) Instrumental methods in electrochemistry. Ellis Horwood Limited, Chichester

    Google Scholar 

  40. Temussi P (2006) J Mol Recognit 19:188–199

    Article  PubMed  CAS  Google Scholar 

  41. Morini G, Bassoli A, Temussi PA (2005) J Med Chem 48:5520–5529

    Article  PubMed  CAS  Google Scholar 

  42. Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X (2004) Proc Natl Acad Sci USA 101:14258–14263

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the EPSRC (studentship for J.C.G.) for support, Lesley Yellowlees for advice on cyclic voltammetry and Nicole Kratochwil for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Sadler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, J.C., Habtemariam, A., Winnig, M. et al. Sweetening ruthenium and osmium: organometallic arene complexes containing aspartame. J Biol Inorg Chem 13, 1111–1120 (2008). https://doi.org/10.1007/s00775-008-0396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0396-1

Keywords

Navigation