Skip to main content
Log in

Long-range charge transport through double-stranded DNA mediated by manganese or iron porphyrins

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Guanine oxidation by electron transfer results in the formation of a guanine radical cation, which is at the origin of long-range charge transport through double-stranded DNA. It is possible to observe guanine lesions at a long distance from the oxidative reagent covalently bound to DNA owing to the migration of the positive hole in the DNA π-stacks. This phenomenon of long-range hole transport is classically studied in the literature with photosensitizers used as one-electron oxidants. It is shown in the present work that the process of long-range charge transport and the concomitant formation of guanine lesions at a long distance can be observed also in the case of two-electron oxidants. This is the signature of the formation of a transient guanine radical cation in the course of the two-electron abstraction process and consequently evidence of the separated one plus one electron abstraction steps. Long-range charge transport is likely to be a universal mechanism for any two-electron oxidant acting by electron abstraction provided that the second electron abstraction is slower than hole transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nunez ME, Hall DB, Barton JK (1999) Chem Biol 6:85–97

    Article  PubMed  CAS  Google Scholar 

  2. Schuster GB (2000) Acc Chem Res 33:253–260

    Article  PubMed  CAS  Google Scholar 

  3. Giese B (2002) Annu Rev Biochem 71:51–70

    Article  PubMed  CAS  Google Scholar 

  4. Lewis FD, Letsinger RL, Wasielewski MR (2001) Acc Chem Res 34:159–170

    Article  PubMed  CAS  Google Scholar 

  5. Nakatani K, Dohno C, Saito I (1999) J Am Chem Soc 121:10854–10855

    Article  CAS  Google Scholar 

  6. Kawai K, Takada T, Tojo S, Ichinose N, Majima T (2001) J Am Chem Soc 123:12688–12689

    Article  PubMed  CAS  Google Scholar 

  7. Steenken S, Jovanovic SV (1997) J Am Chem Soc 119:617–618

    Article  CAS  Google Scholar 

  8. Kasai H, Yamaizumi Z, Berger M, Cadet J (1992) J Am Chem Soc 114:9692–9694

    Article  CAS  Google Scholar 

  9. Steenken S (1989) Chem Rev 89:503–520

    Article  CAS  Google Scholar 

  10. Misiaszek R, Cream C, Joffe A, Geacintov NE, Shafirovich V (2004) J Biol Chem 279:32106–32115

    Article  PubMed  CAS  Google Scholar 

  11. Yun BH, Lee YA, Kim SK, Kuzmin V, Kolbanovskiy A, Dedon PC, Geacintov NE, Shafirovich V (2007) J Am Chem Soc 129:9321–9332

    Article  PubMed  CAS  Google Scholar 

  12. Holmberg RC, Thorp HH (2004) Inorg Chem 43:5080–5085

    Article  PubMed  CAS  Google Scholar 

  13. Pratviel G, Bernadou J, Meunier B (1998) Adv Inorg Chem 45:251–312

    Article  CAS  Google Scholar 

  14. Pitié M, Boldron C, Pratviel G (2006) Adv Inorg Chem 58:77–130

    Article  CAS  Google Scholar 

  15. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) Science 287:1615–1622

    Article  PubMed  CAS  Google Scholar 

  16. Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947–3980

    Article  PubMed  CAS  Google Scholar 

  17. Meunier B, Robert A, Pratviel G, Bernadou J (2000) In: Kadish KM, Smith K, Guilard R (eds) Handbook of porphyrins and related macrocycles, vol 4. Academic Press, San Diego, pp 119–187

  18. Groves TJ (2006) J Inorg Biochem 100:434–447

    Article  PubMed  CAS  Google Scholar 

  19. Pitié M, Bernadou J, Meunier B (1995) J Am Chem Soc 117:2935–2936

    Article  Google Scholar 

  20. Pitié M, Pratviel G, Bernadou J, Meunier B (1992) Proc Natl Acad Sci USA 89:3967–3971

    Article  PubMed  Google Scholar 

  21. Vialas C, Pratviel G, Claparols C, Meunier B (1998) J Am Chem Soc 120:11548–11553

    Article  CAS  Google Scholar 

  22. Vialas C, Claparols C, Pratviel G, Meunier B (2000) J Am Chem Soc 122:2157–2167

    Article  CAS  Google Scholar 

  23. Pratviel G, Meunier B (2006) Chem Eur J 12:6018–6030

    Article  CAS  Google Scholar 

  24. Mourgues S, Kupan A, Pratviel G, Meunier B (2005) Chembiochem 6:2326–2335

    Article  PubMed  CAS  Google Scholar 

  25. Arnaud P, Zakrzewska K, Meunier B (2003) J Comput Chem 24:797–805

    Article  PubMed  CAS  Google Scholar 

  26. Mestre B, Jacobs A, Pratviel G, Meunier B (1996) Biochemistry 35:9140–9149

    Article  PubMed  CAS  Google Scholar 

  27. Mestre B, Pitié M, Loup C, Claparols C, Pratviel G, Meunier B (1997) Nucleic Acids Res 25:1022–1027

    Article  PubMed  CAS  Google Scholar 

  28. Mestre B, Nascimben S, Pratviel G, Meunier B (1998) C R Acad Sci II 1:725–736

    CAS  Google Scholar 

  29. Dubey I, Pratviel G, Meunier B (2000) J Chem Soc Perkin Trans 1:3088–3095

    Article  Google Scholar 

  30. Bigey P, Pratviel G, Meunier B (1995) J Chem Soc Chem Commun 181–182

  31. Fasman GD (1975) Handbook of biochemistry and molecular biology—nucleic acids. 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  32. Casas C, Saint-Jalmes B, Loup C, Lacey CJ, Meunier B (1993) J Org Chem 58:2913–2917

    Article  CAS  Google Scholar 

  33. Bigey P, Frau S, Loup C, Claparols C, Bernadou J, Meunier B (1996) Bull Soc Chim 133:679–689

    CAS  Google Scholar 

  34. Maxam AM, Gilbert W (1980) Methods Enzymol 65:499–560

    Article  PubMed  CAS  Google Scholar 

  35. Kobayashi K, Tagawa S (2003) J Am Chem Soc 125:10213–10218

    Article  PubMed  CAS  Google Scholar 

  36. Lewis FD, Liu X, Liu J, Miller SE, Hayes RT, Wasielewski MR (2000) Nature 406:51–53

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A NATO Science Fellowship to M.M. is gratefully acknowledged. The authors thank Bernard Meunier for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Pratviel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarska, M., Pratviel, G. Long-range charge transport through double-stranded DNA mediated by manganese or iron porphyrins. J Biol Inorg Chem 13, 973–979 (2008). https://doi.org/10.1007/s00775-008-0384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0384-5

Keywords

Navigation