Electron paramagnetic resonance characterization of the copper-resistance protein PcoC from Escherichia coli

Abstract

Continuous-wave and pulsed electron paramagnetic resonance have been applied to the study of the CuII site of the copper-resistance protein PcoC from Escherichia coli and certain variant forms. Electron spin echo envelope modulation (ESEEM) experiments confirm the presence of two histidine ligands, His1 and His92, at the CuII site of wild-type PcoC, consistent with the available X-ray crystallographic data for the homolog CopC (67% sequence identity) from Pseudomonas syringae pv. tomato. The variants H1F and H92F each lack one of the histidine residues close to the CuII site. The ESEEM data suggest that the surviving histidine residue remains as a ligand. The nA variant features an extra alanine residue at the N terminus, which demotes the His1 ligand to position 2. At least one of the two histidine residues is bound at the CuII site in this form. Simulation of the 14N superhyperfine structure in the continuous-wave spectra confirms the presence of at least three nitrogen-based ligands at the CuII sites of the wild-type, H92F and nA forms, while the H1F variant has two nitrogen ligands. The spectra of wild-type form can be fitted adequately with a 3N or a 4N model. The former is consistent with the crystal structure of the CopC homolog, where His1 acts as a bidentate ligand. The latter raises the possibility of an additional unidentified nitrogen ligand. The markedly different spectra of the H1F and nA forms compared with the wild-type and H92F proteins further highlight the integral role of the N-terminal histidine residue in the high-affinity CuII site of PcoC.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

CW:

Continuous wave

EPR:

Electron paramagnetic resonance

ESEEM:

Electron spin echo envelope modulation

HYSCORE:

Hyperfine sublevel correlation experiment

References

  1. 1.

    Rensing C, Grass G (2003) FEMS Microbiol Rev 27:197–213

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Tetaz TJ, Luke RKJ (1983) J Bacteriol 154:1263–1268

    PubMed  CAS  Google Scholar 

  3. 3.

    Rouch D, Camakaris J, Lee BT, Luke RK (1985) J Gen Microbiol 131:939–943

    PubMed  CAS  Google Scholar 

  4. 4.

    Brown NL, Barrett SR, Camakaris J, Lee BT, Rouch DA (1995) Mol Microbiol 17:1153–1166

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Cooksey DA (1994) FEMS Microbiol Rev 14:381–386

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Lee SM, Grass G, Rensing C, Barrett SR, Yates CJD, Stoyanov JV, Brown NL (2002) Biochem Biophys Res Commun 295:616–620

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Puig S, Thiele DJ (2002) Curr Opin Chem Biol 6:171–180

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Huffman DL, Huyett J, Outten FW, Doan PE, Finney LA, Hoffman BM, O’Halloran TV (2002) Biochemistry 41:10046–10055

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Arnesano F, Banci L, Bertini I, Thompsett AR (2002) Structure 10:1337–1347

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Arnesano F, Banci L, Bertini I, Mangani S, Thompsett AR (2003) Proc Natl Acad Sci USA 100:3814–3819

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Koay M, Zhang L, Yang B, Maher MJ, Xiao Z, Wedd AG (2005) Inorg Chem 44:5203–5205

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Zhang L, Koay M, Maher MJ, Xiao Z, Wedd AG (2006) J Am Chem Soc 128:5834–5850

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Chem Rev 106:1995–2044

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Sankararamakrishnan R, Verma S, Kumar S (2005) Proteins 58:211–221

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Harford C, Sarkar B (1997) Acc Chem Res 30:123–130

    Article  CAS  Google Scholar 

  16. 16.

    Djoko KY, Xiao Z, Wedd AG (2008) Chembiochem (in press)

  17. 17.

    Wernimont AK, Huffman DL, Finney LA, Demeler B, O’Halloran TV, Rosenzweig AC (2003) J Biol Inorg Chem 8:185–194

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Peariso K, Huffman DL, Penner-Hahn JE, O’Halloran TV (2003) J Am Chem Soc 125:342–343

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Djoko KY, Xiao Z, Huffman DL, Wedd AG (2007) Inorg Chem 46:4560–4568

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Hanson GR, Gates KE, Noble CJ, Griffin M, Mitchell A, Benson S (2004) J Inorg Biochem 98:903–916

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Peisach J, Blumberg WE (1974) Arch Biochem Biophys 165:691–698

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Deligiannakis Y, Louloudi M, Hadjiliadis N (2000) Coord Chem Rev 204:1–112

    Article  CAS  Google Scholar 

  23. 23.

    McCracken J, Pember S, Benkovic SJ, Villafranca JJ, Miller RJ, Peisach J (1988) J Am Chem Soc 110:1069–1074

    Article  CAS  Google Scholar 

  24. 24.

    Schweiger A, Jeschke G (2001) principles of pulse electron paramagnetic resonance. Oxford University Press, Oxford

    Google Scholar 

  25. 25.

    Mims WB, Peisach J (1978) J Chem Phys 69:4921–4930

    Article  CAS  Google Scholar 

  26. 26.

    Jeschke G (1996) Ph.D thesis, Swiss Federal Institute of Technology, Sect 6.3.2

  27. 27.

    Van Doorslaer S, Sierra GA, Schweiger A (1999) J Magn Reson 136:152–158

    PubMed  Article  Google Scholar 

  28. 28.

    Jin H, Thomann H, Coyle CL, Zumft WG (1989) J Am Chem Soc 111:4262–4269

    Article  CAS  Google Scholar 

  29. 29.

    Slutter CE, Gromov I, Epel B, Pecht I, Richards JH, Goldfarb D (2001) J Am Chem Soc 123:5325–5336

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Australian Research Council for financial support via grant A29930204. S.C.D. and K.J.B. are funded in part by the National Health and Medical Research Council.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simon C. Drew.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information (PDF 313 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Drew, S.C., Djoko, K.Y., Zhang, L. et al. Electron paramagnetic resonance characterization of the copper-resistance protein PcoC from Escherichia coli . J Biol Inorg Chem 13, 899–907 (2008). https://doi.org/10.1007/s00775-008-0377-4

Download citation

Keywords

  • Copper transport
  • Copper proteins
  • Electron paramagnetic resonance
  • Electron spin echo envelope modulation
  • Hyperfine sublevel correlation experiment