Skip to main content

Advertisement

Log in

Mapping iron binding sites on human frataxin: implications for cluster assembly on the ISU Fe–S cluster scaffold protein

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Frataxin is an iron binding mitochondrial matrix protein that has been shown to mediate iron delivery during iron–sulfur cluster and heme biosynthesis. There is a high degree of structural homology for frataxin proteins from diverse sources, and all possess an anionic surface defined by acidic residues. In the human protein these residues principally lie on a surface defined by the α1 helix and β1 sheet and the impact of multiple substitutions of these carboxylate residues on iron binding is described. Full-length human frataxin has previously been shown to undergo self-cleavage to produce a truncated form both in vitro and in vivo. This truncated protein has been shown to bind approximately seven iron centers that are presumably associated with the acidic patch. Relative to this native protein, the stoichiometry decreases according to the number and sites of mutations. Nevertheless, the iron-dependent binding affinity of each frataxin derivative to the iron–sulfur cluster scaffold protein ISU is found to be similar to that of native frataxin, as defined by isothermal titration calorimetry experiments, requiring only one iron center to promote nanomolar binding. While frataxins from various cell types appear to bind differing numbers of iron centers, the physiologically relevant number of bound irons appears to be small, with significantly higher binding affinity following complex formation with partner proteins (micromolar compared with nanomolar binding). By contrast, in reconstitution assays for frataxin-promoted [2Fe–2S]2+ cluster assembly on ISU, one derivative does display a modestly lower reconstitution rate. The overall consensus from these data is to consider a pool of potential sites that can stably bind an iron center when bridged to a variety of physiological targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Warren ST (1996) Science 271:1374–1375

    Article  PubMed  CAS  Google Scholar 

  2. Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel JL, Brice A, Koenig M (1996) N Engl J Med 335:1169–1175

    Article  PubMed  CAS  Google Scholar 

  3. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M (1996) Science 271:1423–1427

    Article  PubMed  CAS  Google Scholar 

  4. Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P (1997) Nat Genet 17:215–217

    Article  PubMed  CAS  Google Scholar 

  5. Ristow M, Pfister MF, Yee AJ, Schubert M, Michael L, Zhang CY, Ueki K, Michael MD, Lowell BB, Kahn CR (2000) Proc Natl Acad Sci USA 97:12239–12243

    Article  PubMed  CAS  Google Scholar 

  6. Foury F (1999) FEBS Lett 456:281–284

    Article  PubMed  CAS  Google Scholar 

  7. Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Nat Genet 27:181–186

    Article  PubMed  CAS  Google Scholar 

  8. Cavadini P, O’Neill HA, Benada O, Isaya G (2002) Hum Mol Genet 11:217–227

    Article  PubMed  CAS  Google Scholar 

  9. Yoon T, Cowan JA (2003) J Am Chem Soc 125:6078–6084

    Article  PubMed  CAS  Google Scholar 

  10. Gerber J, Muhlenhoff U, Lill R (2003) EMBO Rep 4:906–911

    Article  PubMed  CAS  Google Scholar 

  11. Muhlenhoff U, Richhardt N, Ristow M, Kispal G, Lill R (2002) Hum Mol Genet 11:2025–2036

    Article  PubMed  Google Scholar 

  12. Muhlenhoff U, Richhardt N, Gerber J, Lill R (2002) J Biol Chem 277:29810–29816

    Article  PubMed  CAS  Google Scholar 

  13. Bencze KZ, Yoon T, Millán-Pacheco C, Bradley PB, Pastor N, Cowan JA, Stemmler TL (2007) Chem Commun 1798–1800

  14. Yoon T, Cowan JA (2004) J Biol Chem 279:25943–25946

    Article  PubMed  CAS  Google Scholar 

  15. Bulteau AL, O’Neill HA, Kennedy MC, Ikeda-Saito M, Isaya G, Szweda LI (2004) Science 305:242–245

    Article  PubMed  CAS  Google Scholar 

  16. Condò I, Ventura N, Malisan F, Tomassini B, Testi R (2007) J Biol Chem 281:16750–16756

    Article  Google Scholar 

  17. Ventura N, Rea SL, Handerson ST, Condo I, Testi R, Johnson TE (2006) FASEB J 20:1029–1030

    Article  PubMed  CAS  Google Scholar 

  18. Acquaviva F, De Biase I, Nezi L, Ruggiero G, Tatangelo F, Pisano C, Monticelli A, Garbi C, Acquaviva AM, Cocozza S (2005) J Cell Sci 118:3917–3924

    Article  PubMed  CAS  Google Scholar 

  19. Dhe-Paganon S, Shigeta R, Chi YI, Ristow M, Shoelson SE (2000) J Biol Chem 275:30753–30756

    Article  PubMed  CAS  Google Scholar 

  20. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Proc Natl Acad Sci USA 98:10037–10041

    Article  PubMed  CAS  Google Scholar 

  21. He Y, Alam SL, Proteasa SV, Zhang Y, Lesuisse E, Dancis A, Stemmler TL (2004) Biochemistry 43:16254–16262

    Article  PubMed  CAS  Google Scholar 

  22. Bencze KZ, Kondapalli KC, Cook JD, McMahon S, Millan-Pacheco C, Pastor N, Stemmler TL (2006) Crit Rev Biochem Mol Biol 41:269–291

    Article  PubMed  CAS  Google Scholar 

  23. Cook JD, Bencze KZ, Jankovic AD, Crater AK, Busch CN, Bradley PB, Stemmler AJ, Spaller MR, Stemmler TL (2006) Biochemistry 45:7767–7777

    Article  PubMed  CAS  Google Scholar 

  24. Yoon T, Dizin E, Cowan JA (2007) J Biol Inorg Chem 12:535–542

    Article  PubMed  CAS  Google Scholar 

  25. Condo I, Ventura N, Malisan F, Rufini A, Tomassini B, Testi R (2007) Hum Mol Genet 16:1534–1540

    Article  PubMed  CAS  Google Scholar 

  26. Liu J, Oganesyan N, Shin DH, Jancarik J, Yokota H, Kim R, Kim SH (2005) Proteins 59:875–881

    Article  PubMed  CAS  Google Scholar 

  27. Wu S-P, Wu G, Surerus KK, Cowan JA (2002) Biochemistry 41:8876–8885

    Article  PubMed  CAS  Google Scholar 

  28. Foster MW, Mansy SS, Hwang J, Penner-Hahn JE, Surerus KK, Cowan JA (2000) J Am Chem Soc 122:6805–6806

    Article  CAS  Google Scholar 

  29. Ding H, Clark RJ (2004) Biochem J 379:433–440

    Article  PubMed  CAS  Google Scholar 

  30. Ishikawa T, Mizunoe Y, Kawabata S-I, Takade A, Harada M, Wai SN, Yoshida S-I (2003) J Bacteriol 185:1010–1017

    Article  PubMed  CAS  Google Scholar 

  31. Foury F, Pastore A, Trincal M (2007) EMBO Rep 8:194–199

    Article  PubMed  CAS  Google Scholar 

  32. Lesuisse E, Santos R, Matzanke BF, Knight SA, Camadro JM, Dancis A (2003) Hum Mol Genet 12:879–889

    Article  PubMed  CAS  Google Scholar 

  33. Aloria K, Schilke B, Andrew A, Craig EA (2004) EMBO Rep 5:1096–1101

    Article  PubMed  CAS  Google Scholar 

  34. Gakh O, Park S, Liu G, Macomber L, Imlay JA, Ferreira GC, Isaya G (2006) Hum Mol Genet 15:467–479

    Article  PubMed  CAS  Google Scholar 

  35. Cavadini P, Gellera C, Patel PI, Isaya G (2000) Hum Mol Genet 9:2523–2530

    Article  PubMed  CAS  Google Scholar 

  36. Kaiser JT, Clausen T, Bourenkow GP, Bartunik H-D, Steinbacher S, Huber R (2000) J Mol Biol 297:451–464

    Article  PubMed  CAS  Google Scholar 

  37. Liu Y, Cowan JA (2007) Chem Commun 3192–3194

  38. Cho SJ, Lee MG, Yang JK, Lee JY, Song HK, Suh SW (2000) Proc Natl Acad Sci USA 97:8932–8937

    Article  PubMed  CAS  Google Scholar 

  39. Lee MG, Cho SJ, Yang JK, Song HK, Suh SW (2000) Acta Crystallogr D Biol Crystallogr 56:920–921

    Article  PubMed  CAS  Google Scholar 

  40. Musco G, Stier G, Kolmerer B, Adinolfi S, Martin S, Frenkiel T, Gibson T, Pastore A (2000) Structure 8:695–707

    Article  PubMed  CAS  Google Scholar 

  41. Nair M, Adinolfi S, Pastore C, Kelly G, Temussi P, Pastore A (2004) Structure 12:2037–2048

    Article  PubMed  CAS  Google Scholar 

  42. Layer G, Ollagnier-de Choudens S, Sanakis Y, Fontecave M (2006) J Biol Chem 281:16256–16263

    Article  PubMed  CAS  Google Scholar 

  43. Bou-Abdallah F, Adinolfi S, Pastore A, Laue TM, Chasteen ND (2004) J Mol Biol 341:605–615

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Grazia Isaya for the gift of vectors that facilitated preparation of the frataxin derivatives used in these studies. This work was supported by a grant the National Science Foundation, CHE-0111161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Cowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Dizin, E. & Cowan, J.A. Mapping iron binding sites on human frataxin: implications for cluster assembly on the ISU Fe–S cluster scaffold protein. J Biol Inorg Chem 13, 825–836 (2008). https://doi.org/10.1007/s00775-008-0369-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0369-4

Keywords

Navigation