Skip to main content
Log in

Cloning, expression and physicochemical characterization of a di-heme cytochrome c 4 from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The 20-kDa di-heme cytochrome c 4 from the psycrophilic bacterium Pseudoalteromonas haloplanktis TAC 125 was cloned and expressed in Escherichia coli and investigated through UV–vis and 1H NMR spectroscopies and protein voltammetry. The model structure was computed using the X-ray structure of Pseudomonas stutzeri cytochrome c 4 as a template. The protein shows unprecedented properties within the cytochrome c 4 family, including (1) an almost nonpolar surface charge distribution, (2) the absence of high-spin heme Fe(III) states, indicative of a thermodynamically stable and kinetically inert axial heme His,Met coordination, and (3) identical E°′ values for the two heme centers (+0.322 V vs the standard hydrogen elecrode). At pH extremes, both heme groups undergo the “acid” and “alkaline” conformational transitions typical of class I cytochromes c, involving ligand-exchange equilibria, whereas at intermediate pH values their electronic properties are sensitive to several residue ionizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wilson MT, Greenwood C (1996) In: Scott RA, Mauk AG (eds) Cytochrome c: a multidisciplinary approach. University Science Books, Sausalito, chap 19

  2. Battistuzzi G, Borsari M, Sola M (2001) Eur J Inorg Chem 2989–3004

  3. Moore GR, Pettigrew GW (eds) (1990) Cytochromes c. Evolutionary, structural, and physicochemical aspects. Springer, Berlin

    Google Scholar 

  4. Jang X, Wang X (2004) Annu Rev Biochem 73:87–106

    Article  CAS  Google Scholar 

  5. Degli Esposti M (2004) Biochem Soc Trans 32:493–495

    Article  PubMed  CAS  Google Scholar 

  6. Kluck RM, Bossy-Wetzel E, Green DR, Newmayer DD (1997) Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  7. Banci L, Bertini I, Rosato A, Varani G (1999) J Biol Inorg Chem 4:824–837

    Article  PubMed  CAS  Google Scholar 

  8. Kranz R, Lill R, Goldman B, Bonnard G, Merchant S (1998) Mol Microbiol 29:383–396

    Article  PubMed  CAS  Google Scholar 

  9. Médigue C, Krin E, Pascal G, Barbe A, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EP, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Genome Res 15:1325–1335

    Article  PubMed  CAS  Google Scholar 

  10. Mitova M, Tutino ML, Infusini G, Marino G, De Rosa S (2005) Mar Biotechnol 7:523–531

    Article  PubMed  CAS  Google Scholar 

  11. Fenical W (1993) Chem Rev 93:1673–1683

    Article  CAS  Google Scholar 

  12. Newman DJ, Cragg GM, Snader KM (2003) J Nat Prod 66:1022–1037

    Article  PubMed  CAS  Google Scholar 

  13. Jensen PR, Fenical W (2000) In: Fusetani N (eds) Drugs from the sea. Karger, Basel, pp 6–29

    Chapter  Google Scholar 

  14. Andersen NH, Christensen HEN, Iversen G, Nørgaard A, Scharnagl C, Thuesen MH, Ulstrup J (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 100–109

    Google Scholar 

  15. Kadziola A, Larsen S (1997) Structure 5:203–216

    Article  PubMed  CAS  Google Scholar 

  16. Andersen NH, Noergaard A, Jensen TJ, Ulstrup J (2002) J Inorg Biochem 88:316–327

    Article  PubMed  CAS  Google Scholar 

  17. Abergel C, Nitschke W, Malarte G, Bruschi M, Clavarie JM, Giudici-Orticoni MT (2003) Structure 11:547–555

    Article  PubMed  CAS  Google Scholar 

  18. Willner I, Katz E (2000) Angew Chem Int Ed 39:1180–1218

    Article  Google Scholar 

  19. Canalini S, Battistuzzi G, Borsari M, Bortolotti CA, Ranieri A, Sola M (2008) J Phys Chem B 112(5):1555–1563

    Article  CAS  Google Scholar 

  20. Tosco A, Birolo L, Madonna S, Lolli G, Sannia G, Marino G (2003) Extremophiles 1:17–28

    Google Scholar 

  21. Arslan E, Schulz H, Zufferey R, Künzler P, Thöny-Meyer L (1998) Biochem Biophys Res Commun 251:744–747

    Article  PubMed  CAS  Google Scholar 

  22. Schulz H, Hennecke H, Thöny-Meyer L (1998) Science 281:1197–1200

    Article  PubMed  CAS  Google Scholar 

  23. Thöny-Meyer L (1997) Microbiol Rev 61:337–376

    Google Scholar 

  24. Battistuzzi G, Borsari M, De Rienzo F, Di Rocco G, Ranieri A, Sola M (2007) Biochemistry 46:1694–1702

    Article  PubMed  CAS  Google Scholar 

  25. Pollock WBR, Rosell FI, Twitchett MB, Dumont ME, Mauk AG (1998) Biochemistry 37:6124–6131

    Article  PubMed  CAS  Google Scholar 

  26. Scopes RK (ed) (1992) Protein purification: principles and practice. Springer, Berlin

    Google Scholar 

  27. Battistuzzi G, Borsari M, Loschi L, Martinelli A, Sola M (1999) Biochemistry 38:7900–7907

    Article  PubMed  CAS  Google Scholar 

  28. Battistuzzi G, Borsari M, Sola M, Francia F (1997) Biochemistry 36:16247–16258

    Article  PubMed  CAS  Google Scholar 

  29. Battistuzzi G, Borsari M, Cowan JA, Eicken C, Loschi L, Sola M (1999) Biochemistry 38:5553–5562

    Article  PubMed  CAS  Google Scholar 

  30. Sali A, Blundell TL (1993) J Mol Biol 234:799–804

    Article  Google Scholar 

  31. Thompson JD, Higgins DG, Gibson JT (1994) Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  32. Rost B, Saunder C (1993) J Mol Biol 232:584–599

    Article  PubMed  CAS  Google Scholar 

  33. Kalac L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) J Comput Phys 151:283–312

    Article  Google Scholar 

  34. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  35. Miyamoto S, Kollman PA (1992) J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  36. Madura JD, Briggs JM, Wade RC, Davis M, Luty BA, Ilin A, Antonsiewicz J, Bagheri MK, Scott B, McCammon JA (1995) Comput Phys Commun 91:57–95

    Article  CAS  Google Scholar 

  37. Jorgensen WL, Tirado-Rives J (1998) J Am Chem Soc 110:1657–1666

    Article  Google Scholar 

  38. De Rienzo F, Gabdoulline RR, Menziani MC, De Benedetti PG, Wade RC (2001) Biophys J 81:3090–3104

    Article  PubMed  Google Scholar 

  39. Lee B, Richards FM (1971) J Mol Biol 55:379–400

    Article  PubMed  CAS  Google Scholar 

  40. Margoliash E, Frowirth N (1959) Biochem J 71:570–572

    PubMed  CAS  Google Scholar 

  41. Bertini I, Turano P, Vila AJ (1993) Chem Rev 93:2833–2932

    Article  CAS  Google Scholar 

  42. Bertini I, Luchinat C (1996) Coord Chem Rev 150

  43. Cavazza C, Giudici-Orticoni MT, Nitschke W, Appia C, Bonnefoy V, Bruschi M (1996) Eur J Biochem 242:308–314

    Article  PubMed  CAS  Google Scholar 

  44. Conrad LS, Karlsson JJ, Ulstrup J (1995) Eur J Biochem 231:133–141

    PubMed  CAS  Google Scholar 

  45. Bortolotti CA, Battistuzzi G, Borsari M, Facci P, Ranieri A, Sola M (2006) J Am Chem Soc 128:5444–5451

    Article  PubMed  CAS  Google Scholar 

  46. Rosell FI, Harris TR, Hildebrandt DP, Döpner S, Hildebrandt P, Mauk AG (2000) Biochemistry 39:8054–9047

    Article  CAS  Google Scholar 

  47. Northrup SH, Thomasson KA, Miller CM, Barker PD, Eltis ED, Guillemette JG, Inglis SV, Mauk AG, (1993) Biochemistry 32:6613–6623

    Article  PubMed  CAS  Google Scholar 

  48. Rosell FI, Ferrer JC, Mauk AG (1998) J Am Chem Soc 120:11234–11245

    Article  CAS  Google Scholar 

  49. Battistuzzi G, Borsari M, Ferretti S, Sola M, Soliani E (1995) Eur J Biochem 232:206–213

    Article  PubMed  CAS  Google Scholar 

  50. Pettigrew GW, Bartsch RG, Meyer TE, Kamen MD (1978) Biochim Biophys Acta 503:509–523

    Article  PubMed  CAS  Google Scholar 

  51. Moore GR, Harris DF, Leitch FA, Pettigrew GW (1984) Biochim Biophys Acta 764:331–342

    Article  CAS  Google Scholar 

  52. Humphrey W, Dalke A, Schulten K (1996) J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Modena and Reggio Emilia (Fondo di Ateneo per la Ricerca, 2006–2007). NAMD was developed by the Theoretical and Computational Biophysics Group in the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Sola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Rocco, G., Battistuzzi, G., Borsari, M. et al. Cloning, expression and physicochemical characterization of a di-heme cytochrome c 4 from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125. J Biol Inorg Chem 13, 789–799 (2008). https://doi.org/10.1007/s00775-008-0366-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0366-7

Keywords

Navigation