Skip to main content
Log in

Peculiar mechanistic and structural features of the carboplatin–cytochrome c system revealed by ESI-MS analysis

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Carboplatin (CPT), today the most important platinum(II) anticancer drug, manifests an extreme kinetic inertness, in vitro, at physiological pH; the actual mechanisms for its activation inside cells are still poorly understood. We show here that horse heart cytochrome c reacts with CPT, leading to the formation of stable platinum/protein adducts. The two major CPT–cytochrome c species resulting from the aforementioned reaction were characterised by electrospray ionisation mass spectrometry (ESI-MS). Notably, both these adducts have the ability to react with guanosine 5′-monophosphate (5′-GMP), giving rise to the respective cytochrome c–CPT–5′-GMP ternary complexes. Additional ESI-MS measurements on enzymatically cleaved cytochrome c adducts suggest that protein platination probably occurs at Met65. The mechanistic implications of these findings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

cbdca:

1,1-Cyclobutanedicarboxylate

CPT:

Carboplatin

en:

Ethylenediamine

ESI:

Electrospray ionisation

5′-GMP:

Guanosine 5′-monophosphate

MS:

Mass spectrometry

TMeAmAc:

Tetramethylammonium acetate

References

  1. Wang D, Lippard SJ (2005) Nat Rev Drug Discov 4:307–320

    Article  PubMed  CAS  Google Scholar 

  2. Robillard MS, Reedijk J (2005) Platinum-based anticancer drugs. In: King RB (ed) Encyclopedia of inorganic chemistry, 2nd edn. Wiley, Chichester, pp 4488–4498

    Google Scholar 

  3. Canovese L, Cattalini L, Chessa G, Tobe ML (1988) J Chem Soc Dalton Trans 2135–2140

  4. Hay RW, Miller S (1998) Polyhedron 17:2337–2343

    Article  CAS  Google Scholar 

  5. Brabec V (2002) Prog Nucl Acid Res Mol Biol 71:1–68

    Article  CAS  Google Scholar 

  6. Miller SE, House DA (1989) Inorg Chim Acta 166(2):189–197

    Article  CAS  Google Scholar 

  7. Barnham KJ, Djuran MI, Murdoch PS, Ranford JD, Sadler PJ (1996) Inorg Chem 35(4):1065–1072

    Article  PubMed  CAS  Google Scholar 

  8. Kleine M, Wolters D, Sheldrick WSJ (2003) Inorg Biochem 97(4):354–363

    Article  CAS  Google Scholar 

  9. Kung A, Zenker A, Galanski M, Keppler BKJ (2001) Inorg Biochem 3(2–3):181–186

    Article  Google Scholar 

  10. Esposito BP, Najjar R (2002) Coord Chem Rev 232:137–149

    Article  CAS  Google Scholar 

  11. Xie R, Johnson W, Rodriguez L, Gounder M, Hall GS, Buckley B (2007) Anal Bioanal Chem 387(8):2815–2822

    Article  PubMed  CAS  Google Scholar 

  12. Liu S, Liu Y, Li J, Guo M, Nie L, Yao S (2005) J Biochem Biophys Methods 63(2):125–136

    Article  PubMed  CAS  Google Scholar 

  13. Mandal R, Kalke R, Li XF (2004) Chem Res Toxicol 17(10):1391–1397, erratum in Chem Res Toxicol (2005) 18(9):1506

  14. Knipp M, Karotki A, Chesnov S, Natile G, Sadler PJ, Brabec V, Vasak M (2007) J Med Chem 50(17):4075–4086

    Article  PubMed  CAS  Google Scholar 

  15. Xie R, Johnson W, Rodriguez L, Gounder M, Hall GS, Buckley B (2007) Anal Bioanal Chem 387(8):2815–2822

    Article  PubMed  CAS  Google Scholar 

  16. Yang G, Miao R, Jin C, Mei Y, Tang H, Hong J, Guo Z, Zhu L (2005) J Mass Spectrom 40(8):1005–1016

    Article  PubMed  CAS  Google Scholar 

  17. Casini A, Gabbiani C, Mastrobuoni G, Messori L, Moneti G, Pieraccini G (2006) ChemMedChem 1(4):413–417

    Article  PubMed  CAS  Google Scholar 

  18. Pasini A, Caldirola C (1988) Inorg Chim Acta 151(1):19–20

    Article  CAS  Google Scholar 

  19. Di Pasqua AJ, Goodisman J, Kerwood DJ, Toms BB, Dubowy RL, Dabrowiak JC (2006) Chem Res Toxicol 19(1):139–149

    Article  PubMed  CAS  Google Scholar 

  20. Di Pasqua AJ, Goodisman J, Kerwood DJ, Toms BB, Dubowy RL, Dabrowiak JC (2007) Chem Res Toxicol 20(6):896–904

    Article  PubMed  CAS  Google Scholar 

  21. Peleg-Shulman T, Najajreh Y, Gibson D (2002) J Inorg Biochem 91(1):306–311

    Article  PubMed  CAS  Google Scholar 

  22. Lijuan J, Yu C, Guozi T, Wenxia T (1997) J Inorg Biochem 65:73–77

    Article  PubMed  CAS  Google Scholar 

  23. Casini A, Gabbiani C, Mastrobuoni G, Pellicani RZ, Intini FP, Arnesano F, Natile G, Moneti G, Francese S, Messori L (2007) Biochemistry 46(43):12220–12230

    Article  PubMed  CAS  Google Scholar 

  24. Heudi O, Mercier-Jobard S, Cailleux A, Allain P (1999) Biopharm Drug Dispos 20:107–116

    Article  PubMed  CAS  Google Scholar 

  25. Hohage O, Sheldrick WS (2006) J Inorg Biochem 100(9):1506–1513

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from Ente Cassa di Risparmio di Firenze. A.C. and C.G. wish to thank AIRC for providing them with research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luigi Messori or Dan Gibson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabbiani, C., Casini, A., Mastrobuoni, G. et al. Peculiar mechanistic and structural features of the carboplatin–cytochrome c system revealed by ESI-MS analysis. J Biol Inorg Chem 13, 755–764 (2008). https://doi.org/10.1007/s00775-008-0361-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0361-z

Keywords

Navigation