Skip to main content
Log in

The mechanism of antimalarial action of the ruthenium(II)–chloroquine complex [RuCl2(CQ)]2

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of antimalarial action of the ruthenium–chloroquine complex [RuCl2(CQ)]2 (1), previously shown by us to be active in vitro against CQ-resistant strains of Plasmodium falciparum and in vivo against P. berghei, has been investigated. The complex is rapidly hydrolyzed in aqueous solution to [RuCl(OH2)3(CQ)]2[Cl]2, which is probably the active species. This compound binds to hematin in solution and inhibits aggregation to β-hematin at pH ∼ 5 to a slightly lower extent than chloroquine diphosphate; more importantly, the heme aggregation inhibition activity of complex 1 is significantly higher than that of CQ when measured at the interface of n-octanol–aqueous acetate buffer mixtures under acidic conditions modeling the food vacuole of the parasite. Partition coefficient measurements confirmed that complex 1 is considerably more lipophilic than CQ in n-octanol–water mixtures at pH ∼ 5. This suggests that the principal target of complex 1 is the heme aggregation process, which has recently been reported to be fast and spontaneous at or near water–lipid interfaces. The enhanced antimalarial activity of complex 1 is thus probably due to a higher effective concentration of the drug at or near the interface compared with that of CQ, which accumulates strongly in the aqueous regions of the vacuole under those conditions. Furthermore, the activity of complex 1 against CQ-resistant strains of P. falciparum is probably related to its greater lipophilicity, in line with previous reports indicating a lowered ability of the mutated transmembrane transporter PfCRT to promote the efflux of highly lipophilic drugs. The metal complex also interacts with DNA by intercalation, to a comparable extent and in a similar manner to uncomplexed CQ and therefore DNA binding does not appear to be an important part of the mechanism of antimalarial action in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. http://www.who.int/mediacentre/factsheets/fs094/en/index.html (WHO Fact Sheets)

  2. Sachs J, Malaney P (2002) Nature 415:680–685

    Article  PubMed  CAS  Google Scholar 

  3. Winstanley PA (2000) Parasitol Today 16:146–153

    Article  PubMed  CAS  Google Scholar 

  4. Rosenthal PhJ (ed) (2001) Antimalarial chemotherapy: mechanisms of action, resistance and new directions in drug discovery. Humana Press, New Jersey

  5. Weisner J, Ortmann R, Jomaa H, Schlitzer M (2003) Angew Chem Int Ed 42:5274–5293

    Article  Google Scholar 

  6. Kumar S, Guha M, Choubey V, Maity P, Bandyopadhyay U (2007) Life Sci 80:813–828

    Article  PubMed  CAS  Google Scholar 

  7. Wellems TE (2002) Science 298:124–127

    Article  PubMed  CAS  Google Scholar 

  8. Egan TJ, Marques HM (1999) Coord Chem Rev 190-192:493–517

    Article  CAS  Google Scholar 

  9. Ziegler J, Linck R, Wrigth DW (2001) Curr Med Chem 8:171–189

    PubMed  CAS  Google Scholar 

  10. Tilley L, Loria P, Foley M (2001) In: Rosenthal PhJ (ed) Antimalarial chemotherapy: mechanisms of action, resistance and new directions in drug discovery. Humana Press, New Jersey, pp 87–121

  11. Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK (2000) Nature 378:138–139

    Google Scholar 

  12. Cohen SN, Yielding KL (1965) Proc Nat Acad Sci 54:521–527

    Article  PubMed  CAS  Google Scholar 

  13. Guetzoyan L, Ramiandrasoa F, Dorizon H, Desprez C, Bridoux A, Rogier C, Pradines B, Perrée-Fauvet M (2007) Bioorg Med Chem 15:3278–3289

    Article  PubMed  CAS  Google Scholar 

  14. Dheyongera JP, Geldenhuys WJ, Dekker TG, Matsabisa MG, Van der Schyf CJ (2005) Bioorg Med Chem 13:1653–1659

    Article  PubMed  CAS  Google Scholar 

  15. Van Miert S, Jonckers T, Cimanga K, Maes L, Maes B, Lemière G, Dommisse R, Vlietinck A, Pieters L (2004) Exp Parasitol 108:163–168

    Article  PubMed  Google Scholar 

  16. Dorsey G, Fidock DA, Wellems TE, Rosenthal, PhJ (2001) In: Rosenthal PhJ (ed) (2001) Antimalarial chemotherapy: mechanisms of action, resistance and new directions in drug discovery. Humana Press, New Jersey, pp 153–172

  17. Sanchez C, McLean JE, Rohrbach P, Fidock DA, Stein WD, Lanzer M (2005) Biochem 44:9862–9870

    Article  CAS  Google Scholar 

  18. Sanchez C, McLean JE, Stein WD, Lanzer M (2004) Biochem 43:16365–16373

    Article  CAS  Google Scholar 

  19. van Schalkwyk DA, Egan TJ (2006) Drug Resist Updat 9:211–226

    Article  PubMed  Google Scholar 

  20. Siegel H, Siegel A (eds) (2004) Metal ions and their complexes in medication. Metal ions in biological systems, vol 41. Marcel Dekker, New York

  21. Sánchez-Delgado RA, Anzellotti A (2004) Mini Rev Med Chem 4:23–30

    Article  PubMed  Google Scholar 

  22. Sánchez-Delgado RA, Anzellotti A, Suárez L (2004) In: Siegel H, Siegel A (eds) Metal ions and their complexes in medication. Metal ions in biological systems, vol 41. Marcel Dekker, New York, pp 379–419

  23. Sánchez-Delgado RA, Lazardi K, Rincón L, Urbina JA, Hubert AJ, Noels AN (1993) J Med Chem 36:2041–2043

    Article  PubMed  Google Scholar 

  24. Sánchez-Delgado RA, Navarro M, Lazardi K, Atencio R, Capparelli M, Vargas F, Urbina JA, Bouillez A, Noels AF, Masi D (1998) Inorg Chim Acta 275-276:528–540

    Article  Google Scholar 

  25. Navarro M, Lehmann T, Cisneros EJ, Fuentes A, Sánchez-Delgado RA, Silva P, Urbina JA (2000) Polyhedron 19:2319–2325

    Article  CAS  Google Scholar 

  26. Navarro M, Cisneros-Fajardo E, Lehmann T, Sánchez-Delgado RA, Atencio R, Silva P, Lira R, Urbina JA (2001) Inorg Chem 40:6879–6884

    Article  PubMed  CAS  Google Scholar 

  27. Strasberg-Rieber M, Anzellotti A, Sánchez-Delgado RA, Rieber M (2004) Int J Cancer 112:376–384

    Article  PubMed  Google Scholar 

  28. Sánchez-Delgado RA, Navarro M, Pérez H, Urbina JA (1996) J Med Chem 39:1095–1099

    Article  PubMed  Google Scholar 

  29. Navarro M, Pérez H, Sánchez-Delgado RA (1997) J Med Chem 40:1937–1939

    Article  PubMed  CAS  Google Scholar 

  30. Navarro M, Vásquez F, Sánchez-Delgado RA, Pérez H, Sinou V, Schrevel J (2004) J Med Chem 47:5204–5209

    Article  PubMed  CAS  Google Scholar 

  31. Biot C (2004) Curr Med Chem Anti-Infect Agents 3:135–147

    Article  CAS  Google Scholar 

  32. Biot C, Daher W, Ndiaye CM, Melnyk P, Pradines B, Chavain N, Pellet A, Fraisse L, Pelinski L, Jarry C, Brocard J, Khalife J, Forfar-Bares I, Dive D (2006) J Med Chem 49:4707–4714

    Article  PubMed  CAS  Google Scholar 

  33. Egan TJ, Mavuso WW, Ross D, Marques HM (1997) J Inorg Biochem 68:137–145

    Article  PubMed  CAS  Google Scholar 

  34. Biot C, Taramelli D, Forfar-Bares I, Maciejewski LA, Boyce M, Nowogrocki G, Brocard JS, Basilico N, Olliaro P, Egan TJ (2005) Mol Pharm 2:185–193

    Article  PubMed  CAS  Google Scholar 

  35. Parapini S, Basilico N, Pasini E, Egan TJ, Olliaro P, Taramelli D, Monti D (2000) Exp Parasitol 96:249–256

    Article  PubMed  CAS  Google Scholar 

  36. Egan TJ, Chen JY-J, de Villiers KA, Mabotha TE, Naidoo KJ, Ncokazi KK, Langford SJ, McNaughton D, Pandiancherri S, Word BR (2006) FEBS Lett 580:5105–5110

    Article  PubMed  CAS  Google Scholar 

  37. OECD Guidelines for testing of chemicals (1995) No. 107, OECD, Paris

  38. Danielsson LG, Zhang YH (1996) Trends Anal Chem 15:188–196

    CAS  Google Scholar 

  39. Rappel C, Galanski M, Yasemi A, Habala L, Keppler B (2005) Electrophoresis 26:878–884

    Article  PubMed  CAS  Google Scholar 

  40. Wolf A, Shimer Jr GH, Meehan T (1987) Biochemistry 26:6392–6396

    Article  Google Scholar 

  41. Navarro M, Hernández C, Colmenares I, Hernández P, Fernández M, Sierralta A, Marchán E (2007) J Inorg Biochem 101:111–116

    Article  PubMed  CAS  Google Scholar 

  42. McGhee JD, Von Hippel PH (1974) J Mol Biol 86:469–489

    Article  PubMed  CAS  Google Scholar 

  43. Wei C, Jia G, Yuan J, Feng Z, Li C (2006) Biochemistry 45:6681–6691

    Article  PubMed  CAS  Google Scholar 

  44. Boyer R (2006) Biochemistry laboratory: modern theory and techniques. Benjamin Cummings, Reading, pp 253–260

  45. Cusumano M, Di Pietro ML, Giannetto A, (1999) Inorg Chem 38:1754–1758

    Article  PubMed  CAS  Google Scholar 

  46. Satyanarayana S, Dabrowiak JC, Chaires J (1992) Biochem 31:9319–9324

    Article  CAS  Google Scholar 

  47. Corrêa Soares JBR, Maya-Monteiro CM, Bittencourt-Cunha PRB, Atella GC, Lara FA, d’Avila JCP, Menezes D, Vannier-Santos MA, Oliveira PL, Egan TJ, Oliveira MF (2007) FEBS Lett 581:1742–1750, and references therein

    Article  PubMed  Google Scholar 

  48. Jackson KE, Klonis N, Ferguson DJ, Adisa A, Dogovski C, Tilley L (2004) Mol Microbiol 54:109–122

    Article  PubMed  CAS  Google Scholar 

  49. Benjamin I (2004) Chem Phys Lett 393:453–456

    Article  CAS  Google Scholar 

  50. Warhurst DC (2003) Malaria J 2:31–43

    Article  Google Scholar 

  51. Warhurst DC, Craig JC, Adagu IS, Meyer DJ, Lee SY (2003) Malaria J 2:26–30

    Article  Google Scholar 

  52. Meshnick SR (1990) Parasitol Today 6:77–79

    Article  PubMed  CAS  Google Scholar 

  53. Li G-D (2006) Med Hypotheses 67:323–326

    Article  PubMed  CAS  Google Scholar 

  54. Wang Y, Yang ZY (2005) Trans Med Chem 30:902–906

    Article  CAS  Google Scholar 

  55. Satyanarayana S, Dabrowiak JC, Chaires J (1992) Biochem 31:9319–9324

    Article  CAS  Google Scholar 

  56. Novakova O, Chen H, Vrana O, Rodger A, Sadler PJ, Bravec V (2003) Biochem 42:11544–11554

    Article  CAS  Google Scholar 

  57. Farrell N (1989) Transition metal complexes as drugs and chemotherapeutic agents. Kluwer, Dordrecht

    Google Scholar 

Download references

Acknowledgments

Financial support from the NIH through grants no. 1S06 GM 076168-04 (to R.A.S.-D) and 1S06 GM 076168-01 (to L.D.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto A. Sánchez-Delgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, A., Rajapakse, C.S.K., Naoulou, B. et al. The mechanism of antimalarial action of the ruthenium(II)–chloroquine complex [RuCl2(CQ)]2 . J Biol Inorg Chem 13, 703–712 (2008). https://doi.org/10.1007/s00775-008-0356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0356-9

Keywords

Navigation