Skip to main content

Terephthalamide-containing ligands: fast removal of iron from transferrin

Abstract

The mechanism and effectiveness of iron removal from transferrin by three series of new potential therapeutic iron sequestering agents have been analyzed with regard to the structures of the chelators. All compounds are hexadentate ligands composed of a systematically varied combination of methyl-3,2-hydroxypyridinone (Me-3,2-HOPO) and 2,3-dihydroxyterephthalamide (TAM) binding units linked to a polyamine scaffold through amide linkers; each series is based on a specific backbone: tris(2-aminoethyl)amine, spermidine, or 5-LIO(TAM), where 5-LIO is 2-(2-aminoethoxy)ethylamine. Rates of iron removal from transferrin were determined spectrophotometrically for the ten ligands, which all efficiently acquire ferric ion from diferric transferrin with a hyperbolic dependence on ligand concentration (saturation kinetics). The effect of the two iron-binding subunits Me-3,2-HOPO and TAM and of the scaffold structures on iron removal ability is discussed. At the low concentrations corresponding to therapeutic dose, TAM-containing ligands exhibit the fastest rates of iron removal, which correlates with their high affinity for ferric ion and suggests the insertion of such binding units into future therapeutic chelating agents. In addition, urea polyacrylamide gel electrophoresis was used to measure the individual microscopic rates of iron removal from the three iron-bound transferrin species (diferric transferrin, N-terminal monoferric transferrin, C-terminal monoferric transferrin) by the representative chelators 5-LIO(Me-3,2-HOPO)2(TAM) and 5-LIO(TAMmeg)2(TAM), where TAMmeg is 2,3-dihydroxy-1-(methoxyethylcarbamoyl)terephthalamide. Both ligands show preferential removal from the C-terminal site of the iron-binding protein. However, cooperative effects between the two binding sites differ with the chelator. Replacement of hydroxypyridinone moieties by terephthalamide groups renders the N-terminal site more accessible to the ligand and may represent an advantage for iron chelation therapy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Notes

  1. The pM value is the negative logarithm of the free iron concentration in equilibrium with complexed and free ligand, at physiological pH (pH 7.4) with 1 μM total iron concentration and 10 μM total ligand concentration.

  2. We repeat here the detailed solutions of the system of equations used in our analysis, since the mathematical model used in a recent study by Hissen and Moore [38] was based on erroneous solutions to the same integral equations. Caution should be used in interpreting the results of Hissen and Moore.

References

  1. Lippard SJ, Berg JM (eds) (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley

    Google Scholar 

  2. Koppenol WH (2000) In: Badman DG, Bergeron RJ, Brittenham GM (eds) Iron chelators: new development strategies. The Saratoga Group, Ponte Vedra Beach, pp 3–10

    Google Scholar 

  3. Andrews NC (2000) Rev Clin Exp Hematol 4:283–301

    Article  CAS  Google Scholar 

  4. Ponka P (1999) Kidney Int 55:S2–S11

    Article  Google Scholar 

  5. Liu XF, Theil EC (2005) Acc Chem Res 38:167–175

    PubMed  Article  CAS  Google Scholar 

  6. Dertz EA, Raymond KN (2003) In: McCleverty J, Meyer T (eds) Comprehensive coordination chemistry II. Pergamon, Oxford, pp 141–168

    Google Scholar 

  7. Baker EN (1994) Adv Inorg Chem 41:389–463

    CAS  Article  Google Scholar 

  8. Harris DC, Aisen P (1989) In: Loehr T (ed) Iron carriers and iron proteins. VCH, New York, pp 239–352

    Google Scholar 

  9. Otto B, Verweij-van Vught A, Maclaren D (1992) Crit Rev Microbiol 18:217–233

    PubMed  Article  CAS  Google Scholar 

  10. Pietrangelo A (2004) N Engl J Med 350:2383–2397

    PubMed  Article  CAS  Google Scholar 

  11. Thein SL (2004) Br J Haematol 124:264–274

    PubMed  Article  CAS  Google Scholar 

  12. Ballas SK (2002) Drugs 62:1143–1172

    PubMed  Article  CAS  Google Scholar 

  13. Olivieri NF, Brittenham GM (1997) Blood 89:739–761

    PubMed  CAS  Google Scholar 

  14. Olivieri NF (2001) Semin Hematol 38:57–62

    PubMed  Article  CAS  Google Scholar 

  15. Porter JB, Huehns ER, Hider RC (1989) Baillieres Clin Haematol 2:257–292

    PubMed  Article  CAS  Google Scholar 

  16. Kontoghiorghes GJ, Pattichi K, Hadjigavriel M, Kolnagou A (2000) Transfus Sci 23:211–223

    PubMed  Article  CAS  Google Scholar 

  17. Kalinowski DS, Richardson DR (2005) Pharmaco Rev 57:547–583

    Article  CAS  Google Scholar 

  18. O’Sullivan B, Xu J, Raymond Kenneth N (2000) In: Badman DG, Bergeron RJ, Brittenham GM (eds) Iron chelators: new development strategies. The Saratoga Group, Ponte Vedra Beach, pp 177–208

    Google Scholar 

  19. Hider RC, Zhou T (2005) Ann N Y Acad Sci 1054:141–154

    PubMed  Article  CAS  Google Scholar 

  20. O’Sullivan B, Xu J, Raymond KN (2000) In: Badman DG, Bergeron RJ, Brittenham GM (eds) Iron chelators: new development strategies. The Saratoga Group, Ponte Vedra Beach, pp 177–208

    Google Scholar 

  21. Cappellini MD, Cohen A, Piga A, Bejaoui M, Perrotta S, Agaoglu L, Aydinok Y, Kattamis A, Kilinc Y, Porter J, Capra M, Galanello R, Fattoum S, Drelichman G, Magnano C, Verissimo M, Athanassiou-Metaxa M, Giardina P, Kourakli-Symeonidis A, Janka-Schaub G, Coates T, Vermylen C, Olivieri N, Thuret I, Opitz H, Ressayre-Djaffer C, Marks P, Alberti D (2006) Blood 107:3455–3462

    PubMed  Article  CAS  Google Scholar 

  22. Motekaitis RJ, Martell AE (1991) Inorg Chim Acta 183:71–80

    Article  CAS  Google Scholar 

  23. Pippard MJ (1994) In: Bergeron RJ , Brittenham GM (eds) The development of iron chelators for clinical use. CRC, Boca Raton, pp 57–74

  24. Abergel RJ, Raymond KN (2006) Inorg Chem 45:3622–3631

    PubMed  Article  CAS  Google Scholar 

  25. Jurchen KMC, Raymond KN (2005) J Coord Chem 58:55–80

    Article  CAS  Google Scholar 

  26. Jurchen KMC, Raymond KN (2006) Inorg Chem 45:1078–1090

    PubMed  Article  CAS  Google Scholar 

  27. Yokel RA, Fredenburg AM, Durbin PW, Xu J, Rayens MK, Raymond KN (2000) J Pharm Sci 89:545–555

    PubMed  Article  CAS  Google Scholar 

  28. Carrano CJ, Raymond KN (1979) J Am Chem Soc 101:5401–5404

    Article  CAS  Google Scholar 

  29. Kretchmar S, Raymond KN (1986) J Am Chem Soc 108:6212–6218

    Article  CAS  Google Scholar 

  30. Turcot I, Stintzi A, Xu JD, Raymond KN (2000) J Biol Inorg Chem 5:634–641

    PubMed  Article  CAS  Google Scholar 

  31. Kontoghiorghes GJ, Evans RW (1985) FEBS Lett 189:141–144

    PubMed  Article  CAS  Google Scholar 

  32. Harris WR (1984) J Inorg Biochem 21:263–276

    PubMed  Article  CAS  Google Scholar 

  33. Konopka K, Bindereif A, Neilands JB (1982) Biochemistry 21:6503–6508

    PubMed  Article  CAS  Google Scholar 

  34. Harris WR, Rezvani AB, Bali PK (1987) Inorg Chem 26:2711–2716

    Article  CAS  Google Scholar 

  35. Aisen P, Leibman A (1972) Biochim Biophys Acta 257:311–323

    Google Scholar 

  36. Stintzi A, Raymond KN (2000) J Biol Inorg Chem 5:57–66

    PubMed  Article  CAS  Google Scholar 

  37. Ford S, Cooper RA, Evans RW, Hider RC, Williams PH (1988) Eur J Biochem 178:477–481

    PubMed  Article  CAS  Google Scholar 

  38. Hissen AHT, Moore MM (2005) J Biol Inorg Chem 10:211–220

    PubMed  Article  CAS  Google Scholar 

  39. Baldwin D (1980) Biochim Biophys Acta 623:183–198

    PubMed  CAS  Google Scholar 

  40. Hamilton DH, Turcot I, Stintzi A, Raymond KN (2004) J Biol Inorg Chem 9:936–944

    PubMed  Article  CAS  Google Scholar 

  41. Thompson CP, Grady JK, Chasteen ND (1986) J Biol Chem 261:13128–13134

    PubMed  CAS  Google Scholar 

  42. Raymond KN, Telford JR (1995) In: Kessissoglou DP (ed) Bioinorganic chemistry an inorganic perspective of life. Kluwer, Dordrecht, pp 25–37

    Google Scholar 

  43. Raymond KN, Bryan BL (1995) In: Kessissoglou DP (ed) Bioinorganic chemistry an inorganic perspective of life. Kluwer, Dordrecht, pp 13–24

    Google Scholar 

  44. Hershko C, Link G, Konijn AM (2002) In: Templeton DM (ed) Molecular and cellular iron transport. Dekker, New York, pp 775–816

    Google Scholar 

  45. Turcot I, Stintzi A, Xu J, Raymond KN (2000) J Biol Inorg Chem 5:634–641

    PubMed  Article  CAS  Google Scholar 

  46. Bali PK, Harris WR, Nesset-Tollefson D (1991) Inorg Chem 30:502–508

    Article  CAS  Google Scholar 

  47. Bali PK, Harris WR (1989) J Am Chem Soc 111:4457–4461

    Article  CAS  Google Scholar 

  48. Leibman A, Aisen P (1979) Blood 53:1058–1065

    PubMed  CAS  Google Scholar 

  49. Baker EN, Baker HM, Kidd RD (2002) Biochem Cell Biol 80:27–34

    PubMed  Article  CAS  Google Scholar 

  50. He QY, Mason AB (2002) In: Templeton DM (ed) Molecular and cellular iron transport. Dekker, New York, pp 95–124

    Google Scholar 

  51. He QY, Mason AB, Tam BM, MacGillivray RTA, Woodworth RC (1999) Biochemistry 38:9704–9711

    PubMed  Article  CAS  Google Scholar 

  52. Zak O, Tam BM, MacGillivray RTA, Aisen P (1997) Biochemistry 36:11036–11043

    PubMed  Article  CAS  Google Scholar 

  53. Bali PK, Aisen P (1991) Biochemistry 30:9947–9952

    PubMed  Article  CAS  Google Scholar 

  54. Xu JD, Raymond KN (1994) In: Bergeron RJ, Brittenham JM (eds) The development of iron chelators for clinical use. CRC, Boca Raton, pp 307–327

    Google Scholar 

  55. Schwarzenbach G, Schwarzenbach K (1963) Helv Chim Acta 46:1390–1400

    Article  CAS  Google Scholar 

  56. Motekaitis RJ, Martell AE (1991) Inorg Chim Acta 183:71–80

    Article  CAS  Google Scholar 

  57. Harris WR, Carrano CJ, Cooper SR, Sofen SR, Avdeef A, McArdle JV, Raymond KN (1979) J Am Chem Soc 101:6097–6104

    Article  CAS  Google Scholar 

  58. Rodgers SJ, Lee C, Ng CY, Raymond KN (1987) Inorg Chem 26:1622–1625

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Institutes of Health (grant DK057814).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth N. Raymond.

Additional information

Paper number 43 in the series “Ferric ion sequestering agents.” For the previous paper, see [24].

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abergel, R.J., Raymond, K.N. Terephthalamide-containing ligands: fast removal of iron from transferrin. J Biol Inorg Chem 13, 229–240 (2008). https://doi.org/10.1007/s00775-007-0314-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0314-y

Keywords

  • Iron chelation
  • Terephthalamide
  • Hydroxypyridinone
  • Transferrin
  • Kinetics