Skip to main content
Log in

Two sub-states of the red2 state of methyl-coenzyme M reductase revealed by high-field EPR spectroscopy

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Methyl-coenzyme M reductase (MCR) catalyzes the formation of methane from methyl-coenzyme M and coenzyme B in methanogenic archaea. The enzyme has two structurally interlinked active sites embedded in an α2β2γ2 subunit structure. Each active site has the nickel porphyrinoid F430 as a prosthetic group. In the active state, F430 contains the transition metal in the Ni(I) oxidation state. The active enzyme exhibits an axial Ni(I)-based continuous wave (CW) electron paramagnetic resonance (EPR) signal, called red1a in the absence of substrates or red1c in the presence of coenzyme M. Addition of coenzyme B to the MCR-red1 state can partially and reversibly convert it into the MCR-red2 form, which shows a rhombic Ni(I)-based EPR signal (at X-band microwave frequencies of approximately 9.4 GHz). In this report we present evidence from high-field/high-frequency CW EPR spectroscopy (W-band, microwave frequency of approximately 94 GHz) that the red2 state consists of two substates that could not be resolved by EPR spectroscopy at X-band frequencies. At W-band it becomes apparent that upon addition of coenzyme B to MCR in the red1c state, two red2 EPR signals are induced, not one as was previously believed. The first signal is the well-characterized (ortho)rhombic EPR signal, thus far called red2, while the second previously unidentified signal is axial. We have named the two substates MCR-red2r and MCR-red2a after their rhombic and axial signals, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CH3-S-CoM:

Methyl-coenzyme M

CW:

Continuous wave

EPR:

Electron paramagnetic resonance

HS-CoB:

Coenzyme B

HS-CoM:

Coenzyme M

HYSCORE:

Hyperfine sublevel correlation

MCR:

Methyl-coenzyme M reductase

References

  1. Thauer RK (1998) Microbiology 144:2377–2406

    Article  PubMed  CAS  Google Scholar 

  2. Thauer RK, Jungermann K, Decker K (1977) Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  3. Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (1997) Science 278:1457–1462

    Article  PubMed  CAS  Google Scholar 

  4. Goubeaud M, Schreiner G, Thauer RK (1997) Eur J Biochem 243:110–114

    Article  PubMed  CAS  Google Scholar 

  5. Pelmenschikov V, Blomberg MRA, Siegbahn PEM, Crabtree RH (2002) J Am Chem Soc 124:4039

    Article  PubMed  CAS  Google Scholar 

  6. Kunz RC, Horng YC, Ragsdale SW (2006) J Biol Chem 281:34663–34676

    Article  PubMed  CAS  Google Scholar 

  7. Mahlert F, Grabarse W, Kahnt J, Thauer RK, Duin EC (2002) J Biol Inorg Chem 7:101–112

    Article  PubMed  CAS  Google Scholar 

  8. Goenrich M, Duin EC, Mahlert F, Thauer RK (2005) J Biol Inorg Chem 10:333–342

    Article  PubMed  CAS  Google Scholar 

  9. Wasserfallen A, Nolling J, Pfister P, Reeve J, Conway de Macario E (2000) Int J Syst Evol Microbiol 50(Pt 1):43–53

    PubMed  CAS  Google Scholar 

  10. Gunsalus RP, Romesser JA, Wolfe RS (1978) Biochemistry 17:2374–2377

    Article  PubMed  CAS  Google Scholar 

  11. Kobelt A, Pfaltz A, Ankel-Fuchs D, Thauer RK (1987) FEBS Lett 214:265–268

    Article  CAS  Google Scholar 

  12. Ellermann J, Hedderich R, Böcher R, Thauer RK (1988) Eur J Biochem 172:669–677

    Article  PubMed  CAS  Google Scholar 

  13. Rospert S, Linder D, Ellermann J, Thauer RK (1990) Eur J Biochem 194:871–877

    Article  PubMed  CAS  Google Scholar 

  14. Bonacker LG, Baudner S, Mörschel E, Böcher R, Thauer RK (1993) Eur J Biochem 217:587–595

    Article  PubMed  CAS  Google Scholar 

  15. Duin EC, Signor L, Piskorski R, Mahlert F, Clay MD, Goenrich M, Thauer RK, Jaun B, Johnson MK (2004) J Biol Inorg Chem 9:563–576

    Article  PubMed  CAS  Google Scholar 

  16. Mahlert F, Bauer C, Jaun B, Thauer RK, Duin EC (2002) J Biol Inorg Chem 7:500–513

    Article  PubMed  CAS  Google Scholar 

  17. Bradford MM (1976) Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  18. Stoll S, Schweiger A (2006) J Magn Reson 178:42

    Article  PubMed  CAS  Google Scholar 

  19. Finazzo C, Harmer J, Bauer C, Jaun B, Duin EC, Mahlert F, Goenrich M, Thauer RK, Van Doorslaer S, Schweiger A (2003) J Am Chem Soc 125:4988–4989

    Article  PubMed  CAS  Google Scholar 

  20. Finazzo C, Harmer J, Jaun B, Duin EC, Mahlert F, Thauer RK, Van Doorslaer S, Schweiger A (2003) J Biol Inorg Chem 8:586–593

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Swiss National Science Foundation (SNF) and the Fonds der Chemischen Industrie for financial support. D.H. gratefully acknowledges a research scholarship (HI 1094/1-1) from the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Hinderberger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1 (PDF 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kern, D.I., Goenrich, M., Jaun, B. et al. Two sub-states of the red2 state of methyl-coenzyme M reductase revealed by high-field EPR spectroscopy. J Biol Inorg Chem 12, 1097–1105 (2007). https://doi.org/10.1007/s00775-007-0281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0281-3

Keywords

Navigation