Skip to main content
Log in

Human serum albumin coordinates Cu(II) at its N-terminal binding site with 1 pM affinity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The conditional stability constant at pH 7.4 for Cu(II) binding at the N-terminal site (NTS) of human serum albumin (HSA) was determined directly by competitive UV–vis spectroscopy titrations using nitrilotriacetic acid (NTA) as the competitor in 100 mM NaCl and 100 mM N-(2-hydroxyethyl)piperazine-N′-ethanesulfonic acid (Hepes). The log K cNTS value of 12.0 ± 0.1 was determined for HSA dissolved in 100 mM NaCl. A false log log K cNTS value of 11.4 ± 0.1 was obtained in the 100 mM Hepes buffer, owing to the formation of a ternary Cu(NTA)(Hepes) complex. The impact of the picomolar affinity of HSA for Cu(II) on the availability of these ions in neurodegenerative disorders is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer disease

BSA:

Bovine serum albumin

CD:

Circular dichroism

CSF:

Cerebrospinal fluid

EDTA:

Ethylenediaminetetraacetic acid

Hepes:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

HSA:

Human serum albumin

MBS:

Multimetal binding site

NTA:

Nitrilotriacetic acid

NTS:

N-terminal site

PrP:

Prion protein

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Chem Rev 106:1995–2044

    Article  PubMed  CAS  Google Scholar 

  2. Garzon-Rodriguez W, Yatsimirsky AK, Glabe CG (1999) Bioorg Med Chem Lett 9:2243–2248

    Article  PubMed  CAS  Google Scholar 

  3. Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi RE, Bush AI (2000) J Neurochem 75:1219–1233

    Article  PubMed  CAS  Google Scholar 

  4. Burns CS, Aronoff-Spencer E, Legname G, Prusiner SB, Antholine WE, Gerfen GJ, Peisach J, Millhauser GL (2003) Biochemistry 42:6794–6803

    Article  PubMed  CAS  Google Scholar 

  5. Whittal RM, Ball HL, Cohen FE, Burlingame AL, Prusiner SB, Baldwin MA (2000) Protein Sci 9:332–343

    Article  PubMed  CAS  Google Scholar 

  6. Jackson GS, Murray I, Hosszu LL, Gibbs N, Waltho JP, Clarke AR, Collinge J (2001) Proc Natl Acad Sci USA 98:8531–8535

    Article  PubMed  CAS  Google Scholar 

  7. Aronoff-Spencer E, Burns CS, Avdievich NI, Gerfen GJ, Peisach J, Antholine WE, Ball HL, Cohen FE, Prusiner SB, Millhauser GL (2000) Biochemistry 39:13760–13771

    Article  PubMed  CAS  Google Scholar 

  8. Kramer ML, Kratzin HD, Schmidt B, Romer A, Windl O, Liemann S, Hornemann S, Kretzschmar HJ (2001) Biol Chem 276:16711–16719

    Article  CAS  Google Scholar 

  9. Carter DC, Ho JX (1994) Adv Protein Chem 45:153–203

    Article  PubMed  CAS  Google Scholar 

  10. Licastro F, Morini MC, Davis LJ, Biagi R, Prete L, Savorani G (1993) Adv Biosci 87:283–284

    CAS  Google Scholar 

  11. Christenson RH, Behimer P, Howard JF Jr, Winfield JB, Silverman LM (1983) Clin Chem 29:1028–1030

    PubMed  CAS  Google Scholar 

  12. Saa P, Castilla J, Soto C (2006) Science 313:92–94

    Article  PubMed  CAS  Google Scholar 

  13. Deli MA (2005) In: Di Liegro I, Savettieri G (eds) Molecular bases of neurodegeneration. Research Signpost, Trivandrum, pp 137–161

  14. Bal W, Christodoulou J, Sadler PJ, Tucker A (1998) J Inorg Biochem 70:33–39

    Article  PubMed  CAS  Google Scholar 

  15. Sokołowska M, Krężel A, Dyba M, Szewczuk Z, Bal W (2002) Eur J Biochem 269:1323–1331

    Article  PubMed  Google Scholar 

  16. Bearn AG, Kunkel HG (1954) Proc Soc Exp Biol Med 88:44–48

    Google Scholar 

  17. Glennon JD, Sarkar B (1982) Biochem J 203:15–23

    PubMed  CAS  Google Scholar 

  18. Laussac JP, Sarkar B (1984) Biochemistry 23:2832–2838

    Article  PubMed  CAS  Google Scholar 

  19. Sadler PJ, Tucker A, Viles JH (1994) Eur J Biochem 220:193–200

    Article  PubMed  CAS  Google Scholar 

  20. Valko M, Morris H, Mazúr M, Telser J, McInnes EJL, Mabbs FE (1999) J Phys Chem B 103:5591–5597

    Article  CAS  Google Scholar 

  21. Camerman N, Camerman A, Sarkar B (1976) Can J Chem 54:1309–1316

    Article  CAS  Google Scholar 

  22. Gajda T, Henry B, Aubry A, Delpuech JJ (1996) Inorg Chem 35:586–593

    Article  CAS  Google Scholar 

  23. Młynarz P, Valensin D, Kociołek K, Zabrocki J, Olejnik J, Kozłowski H (2002) New J Chem 26:264–268

    Article  CAS  Google Scholar 

  24. Lau SY, Sarkar B (1971) J Biol Chem 246:5938–5943

    PubMed  CAS  Google Scholar 

  25. Masuoka J, Hegenauer J, Van Dyke BR, Saltman P (1993) J Biol Chem 268:21533–21537

    PubMed  CAS  Google Scholar 

  26. Ryall RG (1974) PhD thesis, Australian National University

  27. Giroux E, Schoun J (1981) J Inorg Biochem 14:359–362

    Article  PubMed  CAS  Google Scholar 

  28. Syvertsen C, Gaustad R, Schrøder K, Ljones T (1986) J Inorg Biochem 26:63–76

    Article  PubMed  CAS  Google Scholar 

  29. Zhang Y, Wilcox DE (2002) J Biol Inorg Chem 7:327–337

    Article  PubMed  CAS  Google Scholar 

  30. Chan B, Dodsworth N, Woodrow J, Tucker A, Harris R (1995) Eur J Biochem 227:524–528

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Y, Akilesh S, Wilcox DE (2000) Inorg Chem 39:3057–3064

    Article  PubMed  CAS  Google Scholar 

  32. VanZile ML, Cosper NJ, Scott RA, Giedroc DP (2000) Biochemistry 39:11818–11829

    Article  PubMed  CAS  Google Scholar 

  33. Huang M, Krepkiy D, Hu W, Petering DH (2004) J Inorg Biochem 98:775–785

    Article  PubMed  CAS  Google Scholar 

  34. Liu J, Dutta SJ, Stemmler AJ, Mitra B (2006) Biochemistry 45:763–772

    Article  PubMed  CAS  Google Scholar 

  35. Ellman GL (1958) Arch Biochem Biophys 74:443

    Article  PubMed  CAS  Google Scholar 

  36. Academic Software, Powell KJ (2003) IUPAC stability constants database, version 5

  37. Gao L, Li R, Wang K (1989) J Inorg Biochem 36:83–92

    Article  PubMed  CAS  Google Scholar 

  38. Banerjea D, Kaden T, Sigel H (1981) Inorg Chem 20:2586–2590

    Article  CAS  Google Scholar 

  39. Fischer B, Haring U, Tribolet R, Sigel H (1979) Eur J Biochem 94:523–530

    Article  PubMed  CAS  Google Scholar 

  40. Sokołowska M, Bal W (2005) J Inorg Biochem 99:1653–1660

    Article  PubMed  CAS  Google Scholar 

  41. Kozłowski H, Bal W, Dyba M, Kowalik-Jankowska T (1999) Coord Chem Rev 184:319–346

    Article  Google Scholar 

  42. Felcman J, Frausto da Silva JJR (1983) Talanta 30:565–570

    Article  CAS  PubMed  Google Scholar 

  43. Anderegg G (1982) Pure Appl Chem 54:2693–2758

    CAS  Google Scholar 

  44. Schwarzenbach G, Anderegg G, Schneider W, Senn H (1955) Helv Chim Acta 38:1147–1170

    Article  CAS  Google Scholar 

  45. Buglyo P, Kiss T, Dyba M, Jeżowska-Bojczuk M, Kozłowski H, Bouhsina S (1997) Polyhedron 16:3447–3454

    Article  CAS  Google Scholar 

  46. Still E (1979) Anal Chim Acta 107:105–112

    Article  CAS  Google Scholar 

  47. Hopgood D, Angelici R (1968) J Am Chem Soc 90:2508–2513

    Article  PubMed  CAS  Google Scholar 

  48. Mylonas M, Plakatouras JC, Hadjiliadis N (2004) Dalton Trans 4152–4160

Download references

Acknowledgement

This work was sponsored by the Polish Ministry of Education and Science, grant PBZ-KBN-124/P05/2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Bal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rózga, M., Sokołowska, M., Protas, A.M. et al. Human serum albumin coordinates Cu(II) at its N-terminal binding site with 1 pM affinity. J Biol Inorg Chem 12, 913–918 (2007). https://doi.org/10.1007/s00775-007-0244-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0244-8

Keywords

Navigation