Skip to main content

Advertisement

Log in

Incorporation of two modified nucleosides allows selective platination of an oligonucleotide making it suitable for duplex cross-linking

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Platinated oligonucleotides are promising tools for the control of gene expression, since they may target and cross-link nucleic acid chains. Here we describe a method for the preparation of platinated oligonucleotides that has proved able to selectively cross-link complementary sequences, making use of 5-methylcytidine analogs with thioether or imidazole groups attached to the 4-position. These nucleoside analogs were derivatized as phosphoramidites and introduced in oligonucleotide chains using standard phosphite triester chemistry. Different oligonucleotide sequences containing either one or two analogs appending from the 5′-end were synthesized and used in preliminary platination studies. The reaction of transplatin with oligonucleotides containing the thioether-modified nucleobase was fast, but generally afforded unstable adducts and complex reaction mixtures. The imidazole-containing oligonucleotides reacted with transplatin much more slowly, in particular at slightly basic pH, and it was found that the imidazole-modified cytosine was less reactive than the natural nucleobases. In contrast, transplatin selectively reacted with the thioether and imidazole groups of oligonucleotides containing the two cytosine analogs in neighboring positions, even in the presence of the four nucleobases and particularly three guanines, affording platinated oligonucleotides suitable for cross-linking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lippert B (ed) (1999) Cisplatin. Chemistry and biochemistry of a leading anticancer drug. Wiley, Zurich

  2. van Boom SGE, Reedijk J (1993) Chem Commun 1397–1398

  3. Barnham KJ, Djuran MI, Murdoch PS, Sadler PJ (1994) Chem Commun 721–722

  4. Fröhling CDW, Sheldrick WS (1997) Dalton Trans 4411–4420

  5. Fröhling CDW, Sheldrick WS (1997) Chem Commun 1737–1738

  6. van Boom SGE, Chen BW, Teuben JM, Reedijk J (1999) Inorg Chem 38:1450–1455

    Article  Google Scholar 

  7. Hahn M, Wolters D, Sheldrick WS, Hulsbergen FB, Reedijk J (1999) J Biol Inorg Chem 4:412–420

    Article  PubMed  CAS  Google Scholar 

  8. Reedijk J (1999) Chem Rev 99:2499–2510

    Article  PubMed  CAS  Google Scholar 

  9. Teuben JM, Reedijk J (2000) J Biol Inorg Chem 5:463–468

    PubMed  CAS  Google Scholar 

  10. Marchán V, Moreno V, Pedroso E, Grandas A (2001) Chem Eur J 7:808–815

    Article  Google Scholar 

  11. Hahn M, Kleine M, Sheldrick WS (2001) J Biol Inorg Chem 6:556–566

    Article  PubMed  CAS  Google Scholar 

  12. Marchán V, Pedroso E, Grandas A (2004) Chem Eur J 10:5369–5375

    Article  CAS  Google Scholar 

  13. Deubel DV (2002) J Am Chem Soc 124:5834–5842

    Article  PubMed  CAS  Google Scholar 

  14. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Nature 438:685–689

    Article  PubMed  CAS  Google Scholar 

  15. Arenz C (2006) Angew Chem Int Ed Engl 45:5048–5050

    Article  PubMed  CAS  Google Scholar 

  16. Dalbiès R, Payet D, Leng M (1994) Proc Natl Acad Sci USA 91:8147–8151

    Article  PubMed  Google Scholar 

  17. Giraud-Panis MJ, Leng M (2000) Pharmacol Ther 85:175–181

    Article  PubMed  CAS  Google Scholar 

  18. Boudvillain M, Guérin M, Dalbiès R, Saison-Behmoaras T, Leng M (1997) Biochemistry 36:2925–2931

    Article  PubMed  CAS  Google Scholar 

  19. Aupeix-Schleidler K, Chabas S, Bidou L, Rousset JP, Leng M, Toulmé JJ (2000) Nucleic Acids Res 29:438–445

    Article  Google Scholar 

  20. Schliepe J, Berghoff U, Lippert B, Cech D (1996) Angew Chem Int Ed Engl 35:646–648

    Article  CAS  Google Scholar 

  21. Manchanda R, Dunham SU, Lippard SJ (1996) J Am Chem Soc 118:5144–5145

    Article  CAS  Google Scholar 

  22. Schmidt KS, Filippov DV, Meeuwenoord NJ, van der Marel GA, van Boom JH, Lippert B, Reedijk J (2000) Angew Chem Int Ed Engl 39:375–377

    Article  PubMed  CAS  Google Scholar 

  23. Schmidt KS, Boudvillain M, Schwartz A, van der Marel GA, van Boom JH, Reedijk J, Lippert B (2002) Chem Eur J 8:5566–5570

    Article  CAS  Google Scholar 

  24. Berghoff U, Schmidt K, Janik M, Schöder G, Lippert B (1998) Inorg Chim Acta 269:135–142

    Article  CAS  Google Scholar 

  25. Ren S, Cai L, Segal BM (1999) Dalton Trans 1413–1422

  26. Heetebrij RJ, Tromp RA, van der Marel GA, van Boom JH, Reedijk J (1999) Chem Commun 1693–1694

  27. Heetebrij RJ, de Kort M, Meeuwenoord NJ, den Dulk H, van der Marel GA, van Boom JH, Reedijk J (2003) Chem Eur J 9:1823–1827

    Article  CAS  Google Scholar 

  28. Comess KM, Costello CE, Lippard SJ (1990) Biochemistry 29:2102–2110

    Article  PubMed  CAS  Google Scholar 

  29. Lepre CA, Chassot L, Costello CE, Lippard SJ (1990) Biochemistry 29:811–823

    Article  PubMed  CAS  Google Scholar 

  30. Brabek V, Síp M, Leng M (1993) Biochemistry 32:11676–11681

    Article  Google Scholar 

  31. Algueró B, López de la Osa J, González C, Pedroso E, Marchán V, Grandas A (2006) Angew Chem Int Ed Engl 45:8194–8197

    Article  PubMed  Google Scholar 

  32. MacMillan AM, Verdine GL (1990) J Org Chem 55:5931–5933

    Article  CAS  Google Scholar 

  33. Allerson CR, Chen SL, Verdine GL (1997) J Am Chem Soc 119:7423–7433, and references therein

    Google Scholar 

  34. Horn T, Urdea MS (1989) Nucleic Acids Res 17:6959–6967

    Article  PubMed  CAS  Google Scholar 

  35. Xu YZ, Swann PF (1990) Nucleic Acids Res 18:4061–4065

    Article  PubMed  CAS  Google Scholar 

  36. Beltrán M, Pedroso E, Grandas A (1998) Tetrahedron Lett 39:4115–4118

    Article  Google Scholar 

  37. Marchán V, Rodríguez-Tanty C, Estrada M, Pedroso E, Grandas A (2000) Eur J Org Chem 2495–2500

  38. Andrews DM, Kitchin J, Seale PW (1993) Int J Pept Protein Res 38:469–475

    Article  Google Scholar 

  39. Grandas A, Marchán V, Debéthune L, Pedroso E (2004) In: Beaucage SL, Bergstrom DE, Herdewijn P, Matsuda A (eds) Current protocols in nucleic acid chemistry. Wiley, New York, unit 4.22

  40. Biro S, Fu Y, Zu Z, Epstein SE (1993) Proc Natl Acad Sci USA 90:654–658

    Article  PubMed  CAS  Google Scholar 

  41. IUPAC-IUB (1984) Eur J Biochem 138:9–37

    Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the Ministerio de Educación y Ciencia (grant CTQ2004-8275-C02-01) and the Generalitat de Catalunya (2005SGR-693 and Centre de Referència de Biotecnologia).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vicente Marchán or Anna Grandas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (DOC 208 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Algueró, B., Pedroso, E., Marchán, V. et al. Incorporation of two modified nucleosides allows selective platination of an oligonucleotide making it suitable for duplex cross-linking. J Biol Inorg Chem 12, 901–911 (2007). https://doi.org/10.1007/s00775-007-0243-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0243-9

Keywords

Navigation