Skip to main content
Log in

Structural analysis of Cu(II) ligation to the 5′-GMP nucleotide by pulse EPR spectroscopy

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Simple copper salts are known to denature poly d(GC). On the other hand, copper complexes of substituted 1,4,7,10,13-pentaazacyclohexadecane-14,16-dione are able to convert the right-handed B form of the same DNA sequence to the corresponding left-handed Z form. A research program was started in order to understand why Cu(II) as an aquated ion melts DNA and induces the conformational change to Z-DNA in the form of an azamacrocyclic complex. In this paper, we present a continuous wave and pulse electron paramagnetic resonance study of the mononucleotide model system Cu(II)–guanosine 5′-monophosphate . Pulse EPR methods like electron–nuclear double resonance and hyperfine sublevel correlation spectroscopy provide unique information about the electronic and geometric structure of this model system through an elaborate mapping of the hyperfine and nuclear quadrupole interactions between the unpaired electron of the Cu(II) ion and the magnetic nuclei of the nucleotide ligand. It was found that the Cu(II) ion is directly bound to N7 of guanosine 5′-monophosphate and indirectly bound via a water of hydration to a phosphate group. This set of experiments opens the way to more detailed structural characterization of specifically bound metal ions in a variety of nucleic acids of biological interest, in particular to understand the role of the metal–(poly)nucleotide interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CW:

Continuous wave

DMSO:

Dimethyl sulfoxide

ENDOR:

Electron-nuclear double resonance

EPR:

Electron paramagnetic resonance

5′-GMP:

Guanosine 5′-monophosphate

HYSCORE:

Hyperfine sublevel correlation

Triflate:

Trifluoromethanesulfonate

References

  1. Spingler B (2005) Inorg Chem 44:831–833

    Article  PubMed  CAS  Google Scholar 

  2. Spingler B, Da Pieve C (2005) Dalton Trans 1637–1643

  3. Geierstanger BH, Kagawa TF, Chen S-L, Quigley GJ, Ho PS (1991) J Biol Chem 266:20185–20191

    PubMed  CAS  Google Scholar 

  4. Hiai S, Suzuki K, Moriguchi E (1965) J Mol Biol 11:672–691

    PubMed  CAS  Google Scholar 

  5. Sundaralingam M, Carrabine JA (1971) J Mol Biol 61:287–309

    Article  PubMed  CAS  Google Scholar 

  6. Farrar JA, Neese F, Lappalainen P, Kroneck PMH, Saraste M, Zumft WG, Thomson AJ (1996) J Am Chem Soc 118:11501–11514

    Article  CAS  Google Scholar 

  7. Andersson KK, Schmidt PP, Katterle B, Strand KR, Palmer AE, Lee SK, Solomon EI, Graslund A, Barra AL (2003) J Biol Inorg Chem 8:235–247

    PubMed  CAS  Google Scholar 

  8. Calle C, Sreekanth A, Fedin MV, Forrer J, Garcia-Rubio I, Gromov IA, Hinderberger D, Kasumaj B, Leger P, Mancosu B, Mitrikas G, Santangelo MG, Stoll S, Schweiger A, Tschaggelar R, Harmer J (2006) Helv Chim Acta 89:2495–2521

    Article  CAS  Google Scholar 

  9. delaFuente M, Cozar O, David L, Navarro R, Hernanz A, Bratu I (1997) Spectrochim Acta Part A 53:637–641

    Article  Google Scholar 

  10. Weckhuysen BM, Leeman H, Schoonheydt RA (1999) Phys Chem Chem Phys 1:2875–2880

    Article  CAS  Google Scholar 

  11. Kaczmarek P, Jezowska-Bojczuk M (2005) Inorg Chim Acta 358:2073–2076

    Article  CAS  Google Scholar 

  12. Hoogstraten CG, Grant CV, Horton TE, DeRose VJ, Britt RD (2002) J Am Chem Soc 124:834–842

    Article  PubMed  CAS  Google Scholar 

  13. Schweiger A, Jeschke G (2001) Principles of pulse electron paramagnetic resonance. Oxford University Press, Oxford

    Google Scholar 

  14. Deligiannakis Y, Louloudi M, Hadjiliadis N (2000) Coord Chem Rev 204:1–112

    Article  CAS  Google Scholar 

  15. Davies ER (1974) Phys Lett A 47:1–2

    Article  CAS  Google Scholar 

  16. Mims WB (1965) Proc R Soc Lond 283:452–457

    Article  CAS  Google Scholar 

  17. Stoll S, Schweiger A (2006) J Magn Reson 178:42–55

    Article  PubMed  CAS  Google Scholar 

  18. Madi ZL, Van Doorslaer S, Schweiger A (2002) J Magn Reson 154:181–191

    Article  PubMed  CAS  Google Scholar 

  19. Dikanov SA, Tsvetkov YD, Bowman MK, Astashkin AV (1982) Chem Phys Lett 90:149–153

    Article  CAS  Google Scholar 

  20. Sigel H, Massoud SS, Corfu NA (1994) J Am Chem Soc 116:2958–2971

    Article  CAS  Google Scholar 

  21. Sigel H, Song B (1996) Met Ions Biol Syst 32:135–205

    CAS  Google Scholar 

  22. McGarvey BR (1966) In: Carlin RL (ed) Transition metal chemistry. Dekker, New York, pp 89–201

  23. Peisach J, Blumberg WE (1974) Arch Biochem Biophys 165:691–708

    Article  PubMed  CAS  Google Scholar 

  24. Schosseler PM, Wehrli B, Schweiger A (1997) Inorg Chem 36:4490–4499

    Article  PubMed  CAS  Google Scholar 

  25. Atherton NM, Horsewill AJ (1979) Mol Phys 37:1349–1361

    Article  CAS  Google Scholar 

  26. Manikandan P, Epel B, Goldfarb D (2001) Inorg Chem 40:781–787

    Article  PubMed  CAS  Google Scholar 

  27. Dikanov SA, Xun LY, Karpiel AB, Tyryshkin AM, Bowman MK (1996) J Am Chem Soc 118:8408–8416

    Article  CAS  Google Scholar 

  28. Garcia MLS, Smith JAS (1983) J Chem Soc Perkin Trans II 1401–1408

  29. Stoll S, Calle C, Mitrikas G, Schweiger A (2005) J Magn Reson 177:93–101

    Article  PubMed  CAS  Google Scholar 

  30. Zanker PP, Jeschke G, Goldfarb D (2005) J Chem Phys 122:024515

    Article  PubMed  CAS  Google Scholar 

  31. Sletten E, Lie B (1976) Acta Crystallogr Sect B 32:3301–3304

    Article  Google Scholar 

  32. Allen FH, Kennard O (1993) Chem Des Automat News 8:31–37

    Google Scholar 

  33. Sheldrick WS (1981) Acta Crystallogr Sect B 37:1820–1824

    Article  Google Scholar 

Download references

Acknowledgements

We thank R.K.O. Sigel and C. Finazzo for stimulating discussions. We thank ETH and the Swiss National Science Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George Mitrikas or Bernhard Spingler.

Additional information

Arthur Schweiger died on 4 January 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santangelo, M.G., Medina-Molner, A., Schweiger, A. et al. Structural analysis of Cu(II) ligation to the 5′-GMP nucleotide by pulse EPR spectroscopy. J Biol Inorg Chem 12, 767–775 (2007). https://doi.org/10.1007/s00775-007-0230-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0230-1

Keywords

Navigation