Skip to main content
Log in

Characterization of the active site of catalytically inactive forms of [NiFe] hydrogenases by density functional theory

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The inactive forms, unready (Ni-A, Ni-SU) and ready (Ni-B), of NiFe hydrogenases are modeled by examining the possibility of hydroxo, oxo, hydroperoxo, peroxo, and sulfenate groups in active-site models and comparing predicted IR frequencies and g tensors with those of the enzyme. The best models for Ni-A and Ni-SU have hydroxo (μ-OH) bridges between Fe and Ni and a terminal sulfenate [Ni–S(=O)Cys] group, although a hydroperoxo model for Ni-A is also quite viable, whereas the best model for Ni-B has only a μ-OH bridge. In addition, a mechanism for the activation of unready hydrogenase is proposed on the basis of the relative stabilities of sulfenate models versus peroxide models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Adams MWW, Stiefel EI (1998) Science 282:1842–1843

    Article  PubMed  CAS  Google Scholar 

  2. Cammack R, Frey M, Robson R (2001) Hydrogen as fuel. Taylor & Francis, London

    Google Scholar 

  3. Tye JW, Hall MB, Drensbourg MY (2005) Proc Natl Acad Sci USA 120:16911–16912 and references therein

    Google Scholar 

  4. Volbeda A, Charon MH, Pieras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Nature 373:580–587

    Article  PubMed  CAS  Google Scholar 

  5. Volbeda A, Garcin E, Pieras C, De Lacey AL, Fernandez VM, Hatchikian EC, Frey M, Fontecilla-Camps JC (1996) J Am Chem Soc 118:12989–12996

    Article  CAS  Google Scholar 

  6. De Lacey AL, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC, Fernandez VM (1997) J Am Chem Soc 119:7181–7189

    Article  Google Scholar 

  7. Happe RP, Roseboom W, Pierik AJ, Albracht SPJ, Bagley KA (1997) Nature 385:126

    Article  PubMed  CAS  Google Scholar 

  8. Moura JJG, Moura I, Huynh BH, Krüger HJ, Teixeira M, DuVarney R, DerVartanian DV, Xavier AV, Peck HD Jr, LeGall J (1982) Biochem Biophys Res Commun 108:1388–1393

    Article  PubMed  CAS  Google Scholar 

  9. Albracht SPJ, Kalkman ML, Slater EC (1983) Biochim Biophys Acta 724:309–316

    Article  CAS  Google Scholar 

  10. Fernandez VM, Hatchikian EC, Cammack R (1985) Biochim Biophys Acta 832:69–79

    CAS  Google Scholar 

  11. Fernandez VM, Hatchikian EC, Patil DS, Cammack R (1986) Biochim Biophys Acta 883:145–154

    CAS  Google Scholar 

  12. Rousset M, Montet Y, Guigliarelli B, Forget N, Asso M, Bertrand P, Fontecilla-Camps JC, Hatchikian EC (1998) Proc Natl Acad Sci USA 95:11625–11630

    Article  PubMed  CAS  Google Scholar 

  13. Fan HJ, Hall MB (2001) J Biol Inorg Chem 6:467–473

    Article  PubMed  CAS  Google Scholar 

  14. Stein M, Lubitz W (2002) Curr Opin Chem Biol 6:243–249

    Article  PubMed  CAS  Google Scholar 

  15. Stadler C, De Lacey AL, Montet Y, Volbeda A, Fontecilla-Camps JC, Conesa JC, Fernandez VM (2002) Inorg Chem 41:4424–4434

    Article  PubMed  CAS  Google Scholar 

  16. Cammack R, Patil DS, Hatchikian EC, Fernandez VM (1987) Biochim Biophys Acta 912:98–109

    CAS  Google Scholar 

  17. Whitehead JP, Gurbiel RJ, Bagyinka C, Hoffman BM, Maroney MJ (1993) J Am Chem Soc 115:5629–5635

    Article  CAS  Google Scholar 

  18. Dole F, Fournel A, Magro V, Hatchikian EC, Bertrand P, Guigliarelli B (1997) Biochemistry 36:7847–7854

    Article  PubMed  CAS  Google Scholar 

  19. Huyett JE, Carepo M, Pamplona A, Franco R, Moura I, Moura JJG, Hoffman BM (1997) J Am Chem Soc 119:9291–9292

    Article  CAS  Google Scholar 

  20. Bleijlevens B, Faber BW, Albracht SPJ (2001) J Biol Inorg Chem 6:763–769

    Article  PubMed  CAS  Google Scholar 

  21. Lamle SE, Albracht SPJ, Armstrong FA (2004) J Am Chem Soc 126:14899–14909

    Article  PubMed  CAS  Google Scholar 

  22. Volbeda A, Martin L, Cavazza C, Matho M, Faber BW, Roseboom W, Albracht SPJ, Garcin E, Rousset M, Fontecilla-Camps JC (2005) J Biol Inorg Chem 10:239–249

    Article  PubMed  CAS  Google Scholar 

  23. Ogata H, Hirota S, Nakahara A, Komori H, Shibata N, Kato T, Kano K, Higuchi Y (2005) Structure 13:1635–1642

    Article  PubMed  CAS  Google Scholar 

  24. Amara P, Volbeda A, Fontecilla-Camps JC, Field MJ (1999) J Am Chem Soc 121:4468–4477

    Article  CAS  Google Scholar 

  25. De Gioia L, Fantucci P, Guigliarelli B, Bertrand P (1999) Int J Quantum Chem 73:187–195

    Article  Google Scholar 

  26. Lubitz W, Stein M, Brecht M, Trofanchuk O, Foerster S, Higuchi Y, van Lenthe E, Lendzian F (2000) Biophys J 78A:1660

    Google Scholar 

  27. Li S, Hall MB (2001) Inorg Chem 40:18–24

    Article  PubMed  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B5. Gaussian, Pittsburgh

  29. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phy Rev B37:785–789

    Google Scholar 

  31. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  32. Couty M, Hall MB (1996) J Comput Chem 17:1359–1370

    Article  CAS  Google Scholar 

  33. Ehlers AW, Bohme M, Dapprich S, Gobbi A, Hollwarth A, Jonas V, Kohler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  34. Check CE, Faust TO, Bailey JM, Wright BJ, Gilbert TM, Sunderlin LS (2001) J Phys Chem 105:8111–8116

    CAS  Google Scholar 

  35. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  36. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  37. Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657–2664

    Article  CAS  Google Scholar 

  38. Pardo A, De Lacey AL, Fernandez VM, Fan H-J, Fan Y, Hall MB (2006) J Biol Inorg Chem 11:286–306

    Article  PubMed  CAS  Google Scholar 

  39. Stadler C, De Lacey AL, Hernandez B, Fernandez VM, Conesa JC (2002) Inorg Chem 41:4417–4423

    Article  PubMed  CAS  Google Scholar 

  40. Davidson G, Choudhury SB, Gu Z, Bose K, Roseboom W, Albracht SPJ, Maroney MJ (2000) Biochemistry 39:7468–7479

    Article  PubMed  CAS  Google Scholar 

  41. Gu W, Jacquamet L, Patil DS, Wang H-X, Evans DJ, Smith MC, Millar M, Koch S, Eichhorn DM, Latimer M, Cramer SP (2003) J Inorg Biochem 93:41–51

    Article  PubMed  CAS  Google Scholar 

  42. De Lacey AL, Pardo A, Fernandez VM, Dementin S, Adryanczyck-Perrier G, Hatchikian EC, Rousset M (2004) J Biol Inorg Chem 9:636–642

    Article  PubMed  CAS  Google Scholar 

  43. Grapperhaus CA, Darensbourg MY (1998) Acc Chem Res 31:451–459

    Article  CAS  Google Scholar 

  44. Claiborne A, Yeh JI, Mallett C, Luba J, Crane EJIII, Charrier V, Parsonage D (1999) Biochemistry 38:15407–15416

    Article  PubMed  CAS  Google Scholar 

  45. Carepo M, Tierney DL, Brondino CD, Yang TC, Pamplona A, Telser J, Moura I, Moura JJG, Hoffman BM (2002) J Am Chem Soc 124:281–286

    Article  PubMed  CAS  Google Scholar 

  46. Soederhjelm P, Ryde U (2006) J Mol Struct 770:199–219

    Article  CAS  Google Scholar 

  47. Wang H, Ralston CY, Patil DS, Jones RM, Gu W, Verhagen M, Adams M, Ge P, Riordan C, Marganian CA, Mascharak P, Kovacs J, Miller CG, Collins TJ, Brooker S, Croucher PD, Wang K, Stiefel EI, Cramer SP (2000) J Am Chem Soc 122:10544–10552

    Article  CAS  Google Scholar 

  48. Fan H-J, Hall MB (2002) J Am Chem Soc 124:394–395

    Article  PubMed  CAS  Google Scholar 

  49. Wang H, Ralston CY, Patil DS, Jones RM, Gu W, Verhagen M, Adams M, Ge P, Riordan C, Marganian CA, Mascharak P, Kovacs J, Miller CG, Collins TJ, Brooker S, Croucher PD, Wang K, Stiefel EI, Cramer SP (2002) J Am Chem Soc 122:10544–10552

    Article  CAS  Google Scholar 

  50. Burgdorf T, Loscher S, Liebisch P, Van der Linden E, Galander M, Lendzian F, Meyer-Klaucke W, Albracht SPJ, Friedrich B, Dau H, Haumann M (2005) J Am Chem Soc 127:576–592

    Article  PubMed  CAS  Google Scholar 

  51. Van Gastel M, Fichter C, Neese F, Lubitz W (2005) Biochem Soc Trans 33:7–11

    Article  PubMed  Google Scholar 

  52. De Lacey AL, Pardo A, Fernandez VM, Dementin S, Adryanczyk-Perrier G, Hatchikian EC, Rousset M (2004) J Biol Inorg Chem 9:636–642

    Article  PubMed  CAS  Google Scholar 

  53. Lamle SE, Albracht SPJ, Armstrong FAJ (2005) Am Chem Soc 127:6595–6604

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Laboratory for Molecular Simulation and the Supercomputing Facility at Texas A&M University for providing software and computer time for the theoretical calculations. Financial support of this research from The Welch Foundation (A-0648), The National Science Foundation (CHE 9800184, CHE 0518074, DMS 0216275) and The Spanish Ministry of Science and Technology (BQU2003–04221) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Hall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardo, A., De Lacey, A.L., Fernández, V.M. et al. Characterization of the active site of catalytically inactive forms of [NiFe] hydrogenases by density functional theory. J Biol Inorg Chem 12, 751–760 (2007). https://doi.org/10.1007/s00775-007-0227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0227-9

Keywords

Navigation