Skip to main content
Log in

Interguanine hydrogen-bonding patterns in adducts with water and Zn–purine complexes (purine is 9-methyladenine and 9-methylguanine). Unexpected preference of Zn(II) for adenine-N7 over guanine-N7

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Guanine–guanine hydrogen bonding involving the Watson–Crick edge [N(1)H, N(2)H2] of one base and the Hoogsteen edge (N7, O6) of the other is the dominant association pattern in the solid-state structures of two hydrates of 9-ethylguanine (9-EtGH), and in adducts of 9-methylguanine (9-MeGH) with the Zn compounds [ZnCl2(H2O)(9-MeGH-N7)]·(9-MeGH) as well as [ZnCl2(H2O)(9-MeA-N7)]·2(9-MeGH) (9-MeA is 9-methyladenine). The structures of 9-EtGH·2H2O and 9-EtGH·3.5H2O are dominated by polymeric tape structures of the guanine and extended water clusters. In [ZnCl2(H2O)(9-MeGH-N7)]·(9-MeGH) the metalated guanine is involved in hydrogen bonding (GG3 motif) with a free 9-MeGH, which in turn is centrosymmetrically related to itself via hydrogen bonds involving N(2)H2 and N3 (GG4 motif). In [ZnCl2(H2O)(9-MeA-N7)]·2(9-MeGH) the metalated adenine base interacts via its Watson–Crick edge [N1, N(6)H2] with the sugar edge [N(2)H2, N3] of one of the guanine nucleobases of the GG pair. Crystallization of [ZnCl2(H2O)(9-MeA-N7)]·2(9-MeGH) from an aqueous solution containing 9-MeGH, 9-MeA, and ZnCl2 is fully unexpected in that the anticipated preference of Zn(II) for guanine-N7 is not realized and instead coordination to adenine-N7 is observed. The relevance of [ZnCl2(H2O)(9-MeGH-N7)]·(9-MeGH) and [ZnCl2(H2O)(9-MeA-N7)]·2(9-MeGH) for metal-containing nucleic acid triplex structures is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brown T, Hunter WN (1997) Biopolymers 44:91–103

    Article  CAS  Google Scholar 

  2. Neidle S (ed) (1999) Oxford handbook of nucleic acid structure. Oxford University Press, Oxford

  3. Leontis NB, Westhof E (2001) RNA 7:499–512

    Article  PubMed  CAS  Google Scholar 

  4. Leontis NB, Stombaugh J, Westhof E (2002) Nucleic Acids Res 30:3497–3531

    Article  PubMed  CAS  Google Scholar 

  5. Hobza P, Sandorfy C (1987) J Am Chem Soc 109:1302–1307

    Article  CAS  Google Scholar 

  6. Hobza P, Šponer J (1999) Chem Rev 99:3247–3276

    Article  PubMed  CAS  Google Scholar 

  7. Abo-Riziq A, Crews B, Grace L, de Vries MS (2005) J Am Chem Soc 127:2374–2375

    Article  PubMed  CAS  Google Scholar 

  8. Piuzzi F, Mons M, Dimicoli I, Tardivel B, Zhao Q (2001) Chem Phys 270:205–214

    Article  CAS  Google Scholar 

  9. Hanus M, Ryjáček F, Kabeláč M. Kubař T, Bogdan TV, Trygubenko SA, Hobza P (2003) J Am Chem Soc 125:7678–7688

    Article  PubMed  CAS  Google Scholar 

  10. Chin W, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Gorb L, Leszczynski J (2004) J Phys Chem A 108:8237–8243

    Article  CAS  Google Scholar 

  11. García-Terán JP, Castillo O, Luque A, García-Couceiro U, Beobide G, Román P (2006) Dalton Trans 902–911

  12. Sanz Miguel PJ, Lax P, Lippert B (2004) Inorg Chim Acta 357:4552–4561 and references cited

    Google Scholar 

  13. Zamora F, Sabat M, Lippert B (1996) Inorg Chem 35:4858–4864

    Article  PubMed  CAS  Google Scholar 

  14. Zamora F, Kunsmann M, Sabat M, Lippert B (1997) Inorg Chem 36:1583–1587

    Article  PubMed  CAS  Google Scholar 

  15. Zamora F, Sabat M, Janik M, Siethoff C, Lippert B (1997) Chem Commun 485–486

  16. Zamora F, Amo-Ochoa P, Lippert B (1997) In: Hadjiliadis ND (ed) Cytotoxic, mutagenetic and carcinogenic potential of heavy metals related to human environment. Kluwer, Dordrecht, pp 511–520

  17. Zamora F, Sabat M, Lippert B (1998) Inorg Chim Acta 282:237–242

    Article  CAS  Google Scholar 

  18. Zamora F, Sabat M (2002) Inorg Chem 41:4976–4977

    Article  PubMed  CAS  Google Scholar 

  19. Amo-Ochoa P, Alexandre SS, Pastor C, Zamora F (2005) J Inorg Biochem 99:2226–2230

    Article  PubMed  CAS  Google Scholar 

  20. Amo-Ochoa P, Rodriguez-Tapiador MI, Alexandre SS, Pastor C, Zamora F (2005) J Inorg Biochem 99:1540–1547

    Article  Google Scholar 

  21. Shin YA, Eichhorn GL (1968) Biochemistry 7:1026–1032

    Article  PubMed  CAS  Google Scholar 

  22. Nickol J, Rau DC (1992) J Mol Biol 228:1115–1123

    Article  PubMed  CAS  Google Scholar 

  23. Bernués J, Azorín, F (1995) In: Eckstein F, Lilley DMJ (eds) Nucleic acids and molecular biology, vol 9. Springer, Berlin, pp 1–21

  24. Jia X, Zon G, Marzilli LG (1991) Inorg Chem 30:228–239 and references cited

    Google Scholar 

  25. Vinje J, Parkinson JA, Sadler PJ, Brown T, Sletten E (2003) Chem Eur J 9:1620–1630

    Article  CAS  Google Scholar 

  26. Aoki S, Kimura E (2004) Chem Rev 104:769–787

    Article  PubMed  CAS  Google Scholar 

  27. Kikuta E, Aoki S, Kimura E (2002) J Biol Inorg Chem 7:473–482 and references cited

    Google Scholar 

  28. Krüger G (1893) Z Physiol Chem 80:434–436

    Google Scholar 

  29. Sanz Miguel PJ, Lippert B (2005) Dalton Trans 1679–1686

  30. Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Spagna RJ (1999) Appl Crystallogr 32:115–119

    Article  CAS  Google Scholar 

  31. Sheldrick GM (1997) SHELXS97 and SHELXL97. University of Göttingen, Germany

  32. Molecular Structure (1989) TEXSAN 5.0. Single crystal structure analysis software. Molecular Structure, The Woodlands

  33. Molecular Structure (1995) teXsan 1.7. Single crystal structure analysis software. Molecular Structure, The Woodlands

  34. Farrugia LJ (1998) WINGX. A Windows program for crystal structure analysis. University of Glasgow, UK

  35. Nardelli MJ (1995) Appl Crystallogr 28:659–659

    Article  CAS  Google Scholar 

  36. Spek AL (1998) PLATON. A multipurpose crystallographic tool. Utrecht University, Utrecht

  37. Saenger W (1984) Principles of nucleic acid structures. Springer, Berlin

    Google Scholar 

  38. Yamagata Y, Fukomoto S, Hamada K, Fujiwara T, Tomita K-I (1983) Nucleic Acids Res 111:6475–6486

    Article  Google Scholar 

  39. Metzger S, Lippert B (1996) Angew Chem Int Ed Engl 35:1228–1229

    Article  CAS  Google Scholar 

  40. Gottarelli G, Masiero S, Mezzina E, Pieraccini S, Rabe JP, Samori P, Spada GP (2000) Chem Eur J 6:3242–3248

    Article  CAS  Google Scholar 

  41. Yoshikawa I, Li J, Sakata Y, Araki K (2004) Angew Chem Int Ed Engl 43:102–105

    Article  Google Scholar 

  42. Parkinson GN, Lee MPH, Neidle S (2002) Nature 417:876–880 and references cited

    Google Scholar 

  43. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) Science 289:905–920

    Article  PubMed  CAS  Google Scholar 

  44. Destro R, Kistenmacher TJ, Marsh RE (1974) Acta Crystallogr Sect B 30:79–85

    Article  CAS  Google Scholar 

  45. Pranata J, Wierschke SG, Jorgensen WL (1991) J Am Chem Soc 113:2810–2819

    Article  CAS  Google Scholar 

  46. Sartorius J, Schneider H-J (1996) Chem Eur J 2:1446–1452

    CAS  Google Scholar 

  47. Thewalt U, Bugg CE, Marsh RE (1970) Acta Crystallogr Sect B 26:1089–1101

    Article  Google Scholar 

  48. Giorgi T, Grepioni F, Manet I, Mariani P, Masiero S, Mezzina E, Peraccini S, Satumi L, Spada G, Gottarelli G (2002) Chem Eur J 8:2143–2152

    Article  CAS  Google Scholar 

  49. Steiner T, Desiraju GR (1998) Chem Commun 891–892

  50. Wahl MC, Rao ST, Sundaralingam M (1996) Nat Struct Biol 3:24–31

    Article  PubMed  CAS  Google Scholar 

  51. Infantes L, Chisholm J, Motherwell S (2004) Cryst Eng Commun 5:480–486

    Google Scholar 

  52. Freisinger E, Rother IB, Lüth MS, Lippert B (2003) Proc Natl Acad Sci USA 100:3748–3753

    Article  PubMed  CAS  Google Scholar 

  53. Freisinger E, Meier S, Lippert B (2000) J Chem Soc Dalton Trans 3274–3280

  54. Roitzsch M, Lippert B (2005) Chem Commun 5991–5993

  55. Lippert B (2005) Prog Inorg Chem 54:385–447 and references cited

    Google Scholar 

  56. Dieter-Wurm I, Sabat M, Lippert B (1992) J Am Chem Soc 114:357–359

    Article  CAS  Google Scholar 

  57. Schröder G, Lippert B, Sabat M, Lock CJL, Faggiani R, Song B, Sigel H (1995) J Chem Soc Dalton Trans 3767–3775

  58. Sigel RKO, Freisinger E, Lippert B (1998) Chem Commun 219–220

  59. Sigel RKO, Thompson SM, Freisinger E, Lippert B (1999) Chem Commun 19–20

  60. Sigel RKO, Freisinger E, Lippert B (2000) J Biol Inorg Chem 5:287–299

    Article  PubMed  CAS  Google Scholar 

  61. Lüth MS, Freisinger E, Lippert B (2001) Chem Eur J 7:2104–2113

    Article  Google Scholar 

  62. Badura D, Vahrenkamp H (2002) Inorg Chem 41:6020–6027

    Article  PubMed  CAS  Google Scholar 

  63. Muthiah PT, Mazumdar SK, Chaudhuri S (1983) J Inorg Biochem 19:237–246

    Article  CAS  Google Scholar 

  64. Maixner J, Zachova J (1993) Acta Crystallogr Sect C 49:927–929

    Article  Google Scholar 

  65. García-Raso A, Fiol JJ, Badenas F, Tasada A, Solans X, Font-Bardía M, Basallote MG, Manez MA, Fernández-Trujillo MJ, Sánchez D (2003) J Inorg Biochem 93:141–151

    Article  PubMed  Google Scholar 

  66. Travnicek Z, Krystof V, Sipl M (2006) J Inorg Biochem 100:214–225

    Article  PubMed  CAS  Google Scholar 

  67. García-Raso A, Fiol JJ, Badenas F, Cons R, Terrán A, Quirós M (1999) J Chem Soc Dalton Trans 167–173

  68. McCall MJ, Taylor MR (1976) Acta Crystallogr 1687–1691

  69. Shipman MA, Price C, Gibson AE, Elsegood MRJ, Clegg W, Houlton A (2000) Chem Eur J 6:4371–4378

    Article  CAS  Google Scholar 

  70. Laity HL, Taylor MR (1995) Acta Crystallogr Sect C 51:1791–1793

    Article  Google Scholar 

  71. Skipworth MH, Taylor MR, Ávila-Rosón JC, Hidalgo MA, Suárez-Varela J, Colacio E (1993) J Inorg Biochem 49:245–253

    Article  CAS  Google Scholar 

  72. Prasama MD, Guru-Row TN (2000) Cryst Eng 3:135–154

    Article  Google Scholar 

  73. Choudhury AR, Nagarajan K, Row G (2004) Acta Crystallogr Sect C 60:o644–o647

    Article  CAS  Google Scholar 

  74. Saraogi I, Vijay VG, Das S, Sekar K, Guru-Row TN (2003) Cryst Eng 6:69–77

    Article  CAS  Google Scholar 

  75. Vlieghe D, van Meervelt L, Dautant A, Gallois B, Précigoux G, Kennard O (1996) Science 273:1702–1705

    Article  PubMed  CAS  Google Scholar 

  76. Kohwi Y, Kohwi-Shigematsu T (1988) Proc Natl Acad Sci USA 85:3781–3785

    Article  PubMed  CAS  Google Scholar 

  77. Beal PA, Dervan (1991) Science 251:1360–1363

    Article  PubMed  CAS  Google Scholar 

  78. Potaman VN, Soyfer VN (1994) J Biomol Struct Dyn 11:1035–1040 and references cited

    Google Scholar 

  79. Šponer J, Sabat M, Burda JV, Doody AM, Leszczynski J, Hobza P (1998) J Biomol Struct Dyn 16:139–143

    PubMed  Google Scholar 

  80. Šponer J, Sabat M, Gorb L, Leszczynski J, Lippert B, Hobza P (2000) J Phys Chem B 104:7535–7544

    Article  Google Scholar 

  81. Martin RB, Mariam YH (1979) Metal Ions Biol Syst 8:57–124

    CAS  Google Scholar 

  82. Moroni F, Famulari A, Raimondi M, Sabat M (2003) J Phys Chem B 107:4196–4202

    Article  CAS  Google Scholar 

  83. Su L, Chen L, Egli M, Berger JM, Rich A (1999) Nat Struct Biol 6:285–292

    Article  PubMed  CAS  Google Scholar 

  84. Šponer J, Sabat M, Burda JV, Leszczynski J, Hobza P (1999) J Phys Chem B 103:2528–2534

    Article  Google Scholar 

  85. Guerra CF, Bickelhaupt FM (1999) Angew Chem Int Ed Engl38:2942–2945

    Article  CAS  Google Scholar 

  86. Brandl M, Meyer M, Sühnel J (1999) J Am Chem Soc 121:2605–2606

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) and the Spanish Ministerio de Educación y Ciencia (NAN2004-09183-C10-06 and MAT2004-05589-C02-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernhard Lippert or Félix Zamora.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information (DOC 1.9 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amo-Ochoa, P., Sanz Miguel, P.J., Castillo, O. et al. Interguanine hydrogen-bonding patterns in adducts with water and Zn–purine complexes (purine is 9-methyladenine and 9-methylguanine). Unexpected preference of Zn(II) for adenine-N7 over guanine-N7. J Biol Inorg Chem 12, 543–555 (2007). https://doi.org/10.1007/s00775-007-0206-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0206-1

Keywords

Navigation