Skip to main content
Log in

Physicochemical and MRI characterization of Gd3+-loaded polyamidoamine and hyperbranched dendrimers

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Generation 4 polyamidoamine (PAMAM) and, for the first time, hyperbranched poly(ethylene imine) or polyglycerol dendrimers have been loaded with Gd3+ chelates, and the macromolecular adducts have been studied in vitro and in vivo with regard to MRI contrast agent applications. The Gd3+ chelator was either a tetraazatetracarboxylate DOTA-pBn4− or a tetraazatricarboxylate monoamide DO3A-MA3− unit. The water exchange rate was determined from a 17O NMR and 1H Nuclear Magnetic Relaxation Dispersion study for the corresponding monomer analogues [Gd(DO3A-AEM)(H2O)] and [Gd(DOTA-pBn-NH2)(H2O)] (k 298ex  = 3.4 and 6.6 × 106 s−1, respectively), where H3DO3A-AEM is {4-[(2-acetylaminoethylcarbamoyl)methyl]-7,10-bis(carboxymethyl-1,4,7,10-tetraazacyclododec-1-yl)}-acetic acid and H4DOTA-pBn-NH2 is 2-(4-aminobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid. For the macromolecular complexes, variable-field proton relaxivities have been measured and analyzed in terms of local and global motional dynamics by using the Lipari–Szabo approach. At frequencies below 100 MHz, the proton relaxivities are twice as high for the dendrimers loaded with the negatively charged Gd(DOTA-pBn) in comparison with the analogous molecule bearing the neutral Gd(DO3A-MA). We explained this difference by the different rotational dynamics: the much slower motion of Gd(DOTA-pBn)-loaded dendrimers is likely related to the negative charge of the chelate which creates more rigidity and increases the overall size of the macromolecule compared with dendrimers loaded with the neutral Gd(DO3A-MA). Attachment of poly(ethylene glycol) chains to the dendrimers does not influence relaxivity. Both hyperbranched structures were found to be as good scaffolds as regular PAMAM dendrimers in terms of the proton relaxivity of the Gd3+ complexes. The in vivo MRI studies on tumor-bearing mice at 4.7 T proved that all dendrimeric complexes are suitable for angiography and for the study of vasculature parameters like blood volume and permeability of tumor vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CA:

Contrast agent

DCE:

Dynamic contrast enhanced

DTPA:

Diethylenetriaminpentaacetic acid

EPR:

Electron paramagnetic resonance

FLASH:

Fast low-angle shot

FOV:

Field of view

G4:

Generation 4

H3DO3A-AEM:

{4-[(2-Acetylaminoethylcarbamoyl)methyl]-7,10-bis(carboxymethyl-1,4,7,10-tetraazacyclododec-1-yl)}-acetic acid

H4DOTA-pBn-NH2 :

2-(4-Aminobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

H4DOTA-pBn-SCN is:

2-(4-Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

H4DOTA-NHS:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(N-hydroxysuccinimide ester)

HB:

Hyperbranched

HEPES:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

ICP:

Inductively coupled plasma

IR:

Inversion recovery

MA:

Monoamide

mPEG-SPA:

Methoxypoly(ethylene glycol)–succinimidyl propionate

MRI:

Magnetic resonance imaging

NMRD:

Nuclear Magnetic Relaxation Dispersion

PAMAM:

Polyamidoamine

PEG:

Poly(ethylene glycol)

PEI:

Poly(ethylene imine)

PG:

Polyglycerol

RARE:

Rapid acquisition and relaxation enhancement, fast spin echo MRI method

ROI:

Region of interest

TE:

Echo time

TR:

Repetition time

ZFS:

Zero-field splitting

References

  1. Edelman RR, Hesselink JR, Zlatkin MB (1996) MRI: clinical magnetic resonance imaging. Saunders, Philadelphia

    Google Scholar 

  2. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Chem Rev 99:2293

    Article  PubMed  CAS  Google Scholar 

  3. Tóth É, Merbach AE (eds) (2001) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Chichester

  4. Boas U, Heegaard Peter MH (2004) Chem Soc Rev 33:43

    Article  PubMed  CAS  Google Scholar 

  5. Stiriba S-E, Frey H, Haag R (2002) Angew Chem Int Ed Engl 41:1329

    Article  CAS  Google Scholar 

  6. Qiu LY, Bae YH (2006) Pharm Res 23:1

    Article  PubMed  CAS  Google Scholar 

  7. Wiener EC, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, Lauterbur PC (1994) Magn Reson Med 31:1

    Article  PubMed  CAS  Google Scholar 

  8. Bryant LH Jr, Brechbiel MW, Wu C, Bulte JWM, Herynek V, Frank JA (1999) J Magn Reson Imaging 9:348

    Article  PubMed  Google Scholar 

  9. Margerum LD, Campion BK, Koo M, Shargill N, Lai J-J, Marumoto A, Sontum PC (1997) J Alloys Compd 249:185

    Article  CAS  Google Scholar 

  10. Tóth É, Pubanz D, Vauthey S, Helm L, Merbach AE (1996) Chem Eur J 2:1607

    Google Scholar 

  11. Konda SD, Aref M, Brechbiel M, Wiener EC (2000) Invest Radiol 35:50

    Article  PubMed  CAS  Google Scholar 

  12. Rudovsky J, Hermann P, Botta M, Aime S, Lukes I (2005) Chem Commun 2390

  13. Dong Q, Hurst DR, Weinmann HJ, Chenevert TL, Londy FJ, Prince MR (1998) Invest Radiol 33:699

    Article  PubMed  CAS  Google Scholar 

  14. Venditto VJ, Regino CAS, Brechbiel MW (2005) Mol Pharm 2:302

    Article  PubMed  CAS  Google Scholar 

  15. Esfand R, Tomalia DA (2001) Drug Discov Today 6:427

    Article  PubMed  CAS  Google Scholar 

  16. Voit BI (2003) C R Chimie 6:821

    Article  CAS  Google Scholar 

  17. Fernandes EGR, De Queiroz AAA, Abraham GA, Roman JS (2006) J Mater Sci Mater Med 17:105

    Article  PubMed  CAS  Google Scholar 

  18. Lipari G, Szabo A (1982) J Am Chem Soc 104:4546

    Article  CAS  Google Scholar 

  19. Lipari G, Szabo A (1982) J Am Chem Soc 104:4559

    Article  CAS  Google Scholar 

  20. Krämer M, Stumbé J-F, Grimm G, Kaufmann B, Krüger U, Weber M, Haag R (2004) ChemBioChem 5:1081

    Article  PubMed  CAS  Google Scholar 

  21. Koç F, Wyszogrodzka M, Eilbracht P, Haag R (2005) J Org Chem 70:2021

    Article  PubMed  CAS  Google Scholar 

  22. Ammann C, Meier P, Merbach AE (1982) J Magn Reson 46:319

    CAS  Google Scholar 

  23. Hugi AD, Helm L, Merbach AE (1985) Helv Chim Acta 68:508

    Article  CAS  Google Scholar 

  24. Yerly F (1999) Visualiseur 2.3.4. Institute of Molecular and Biological Chemistry, University of Lausanne, Lausanne

  25. Yerly F (1999) Optimiseur 2.3.4. Institute of Molecular and Biological Chemistry, University of Lausanne, Lausanne

  26. Haase A, Matthaei D, Bartkowski R, Duhmke E, Leibfritz D (1989) J Comput Assist Tomogr 13:1036

    Article  PubMed  CAS  Google Scholar 

  27. Jivan A, Horsfield MA, Moody AR, Cherryman GR (1997) J Magn Reson 127:65

    Article  PubMed  CAS  Google Scholar 

  28. Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, Konishi J, Togashi K, Brechbiel MW (2001) Magn Res Med 46:781

    Article  CAS  Google Scholar 

  29. Tóth É, Helm L, Merbach AE (2001) In: Tóth É, Merbach AE (eds) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Chichester, pp 45–120

  30. Kowalewski J, Kruk D, Parigi G (2005) Adv Inorg Chem 57:42

    Google Scholar 

  31. Helm L (2006) Prog NMR Spectrosc 49:45

    Article  CAS  Google Scholar 

  32. Belorizky E, Fries PH (2004) Phys Chem Chem Phys 6:2341

    Article  CAS  Google Scholar 

  33. Helm L, Tóth É, Merbach AE (2003) In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 40. Marcel Dekker, New York

  34. Laurent S, Houzé S, Guérit N, Muller RN (2000) Helv Chim Acta 83:394

    Article  CAS  Google Scholar 

  35. Vander Elst L, Maton F, Laurent S, Seghi F, Chapelle F, Muller RN (1997) Magn Reson Med 38:604

    Article  PubMed  CAS  Google Scholar 

  36. Laurent S, Botteman F, Vander Elst L, Muller RN (2004) Eur J Inorg Chem 3:463

    Article  CAS  Google Scholar 

  37. Woods M, Kovacs Z, Zhang S, Sherry AD (2003) Angew Chem Int Ed Engl 42:5889

    Article  PubMed  CAS  Google Scholar 

  38. Laus S, Ruloff R, Tóth É, Merbach AE (2003) Chem Eur J 9:3555

    Article  CAS  Google Scholar 

  39. Tóth É, Helm L, Kellar KE, Merbach AE (1999) Chem Eur J 5:1202

    Article  Google Scholar 

  40. Nicolle GM, Tóth É, Eisenwiener KP, Mäcke HR, Merbach AE (2002) J Biol Inorg Chem 7:757

    Article  PubMed  CAS  Google Scholar 

  41. Laus S, Sour A, Ruloff R, Tóth É, Merbach AE (2005) Chem Eur J 11:3064

    Article  CAS  Google Scholar 

  42. Nicolle GM, Tóth É, Schmitt-Willich H, Radüchel B, Merbach AE (2002) Chem Eur J 8:1040

    Article  CAS  Google Scholar 

  43. Leach MO, Brindle KM, Evelhoch JL, Griffiths JR, Horsman MR, Jackson A, Jayson GC, Judson IR, Knopp MV, Maxwell RJ, McIntyre D, Padhani AR, Price P, Rathbone R, Rustin GJ, Tofts PS, Tozer GM, Vennart W, Waterton JC, Williams SR, Workman P (2005) Br J Cancer 92:1599

    Article  PubMed  CAS  Google Scholar 

  44. Burai L, Tóth É, Bazin H, Benmelouka M, Jászberényi Z, Merbach AE (2006) Dalton Trans 629

Download references

Acknowledgements

We thank the Swiss National Science Foundation and the Swiss State Secretariat for Education and Research (SER) for financial support. This work was performed in the frame of the EU COST Actions D18 “Lanthanide chemistry for diagnosis and therapy” and D38 “Metal-based systems for molecular imaging applications” and the European-founded EMIL program (LSCH-2004–503569).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éva Tóth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2006_197_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jászberényi, Z., Moriggi, L., Schmidt, P. et al. Physicochemical and MRI characterization of Gd3+-loaded polyamidoamine and hyperbranched dendrimers. J Biol Inorg Chem 12, 406–420 (2007). https://doi.org/10.1007/s00775-006-0197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0197-3

Keywords

Navigation