Skip to main content

Advertisement

Log in

Crucial role of lysosomal iron in the formation of dinitrosyl iron complexes in vivo

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Dinitrosyl non-heme–iron complexes (DNIC) are found in many nitric oxide producing tissues. A prerequisite of DNIC formation is the presence of nitric oxide, iron and thiol/imidazole groups. The aim of this study was to investigate the role of the cellular labile iron pool in the formation of DNIC in erythroid K562 cells. The cells were treated with a nitric oxide donor in the presence of a permeable (salicylaldehyde isonicotinoyl hydrazone) or a nonpermeable (desferrioxamine mesylate) iron chelator and DNIC formation was recorded using electron paramagnetic resonance. Both chelators inhibited DNIC formation up to 50% after 6 h of treatment. To further investigate the role of lysosomal iron in DNIC formation, we prevented lysosomal proteolysis by pretreatment of whole cells with NH4Cl. Pretreatment with NH4Cl inhibited the formation of DNIC in a time-dependent manner that points to the importance of the degradation of iron metalloproteins in DNIC formation in vivo. Fractionation of the cell content after treatment with the nitric oxide donor revealed that DNIC is formed predominantly in the endosomal/lysosomal fraction. Taken together, these data indicate that lysosomal iron plays a crucial role in DNIC formation in vivo. Degradation of iron-containing metalloproteins seems to be important for this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DEANO:

2-(N,N-Diethylamino)-diazenolate-2-oxide

DFO:

Desferrioxamine mesylate

DNIC:

Dinitrosyl non-heme–iron complexes

EPR:

Electron paramagnetic resonance

Hepes:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

LIP:

Labile iron pool

MRP1:

Multidrug-resistance-associated protein 1

PBS:

Phosphate-buffered saline

SIH:

Salicylaldehyde isonicotinoyl hydrazone

References

  1. Drapier JC, Pellat C, Henry Y (1991) J Biol Chem 266:10162–10167

    PubMed  CAS  Google Scholar 

  2. Bastian NR, Yim CY, Hibbs JB Jr, Samlowski WE (1994) J Biol Chem 269:5127–5131

    PubMed  CAS  Google Scholar 

  3. Pieper GM, Halligan NL, Hilton G, Konorev EA, Felix CC, Roza AM, Adams MB, Griffith OW (2003) Proc Natl Acad Sci USA 100:3125–3130

    Article  PubMed  CAS  Google Scholar 

  4. Pillay CS, Elliott E, Dennison C (2002) Biochem J 363:417–429

    Article  PubMed  CAS  Google Scholar 

  5. Vanin AF, Malenkova IV, Serezhenkov VA (1997) Nitric Oxide 1:191–203

    Article  PubMed  CAS  Google Scholar 

  6. Costanzo S, Menage S, Purrello R, Bonomo RP, Fontecave M (2001) Inorg Chim Acta 318:1–7

    Article  CAS  Google Scholar 

  7. Vanin A, Kleschyov A (1999) In: Lukiewicz S, Zweier JL (eds) Nitric oxide in transplant rejection and anti-tumor defence. Kluwer, Boston, pp 49–82

  8. Ueno T, Yoshimura T (2000) Jpn J Pharmacol 82:95–101

    Article  PubMed  CAS  Google Scholar 

  9. Vanin AF (1998) Biochemistry (Moscow) 63:782–793

    CAS  Google Scholar 

  10. Keese MA, Bose M, Mulsch A, Schirmer RH, Becker K (1997) Biochem Pharmacol 54:1307–1313

    Article  PubMed  CAS  Google Scholar 

  11. Henry Y, Ducrocq C, Drapier JC, Servent D, Pellat C, Guissani A (1991) Eur Biophys J 20:1–15

    Article  PubMed  CAS  Google Scholar 

  12. Kim YM, Chung HT, Simmons RL, Billiar TR (2000) J Biol Chem 275:10954–10961

    Article  PubMed  CAS  Google Scholar 

  13. Cesareo E, Parker LJ, Pedersen JZ, Nuccetelli M, Mazzetti AP, Pastore A, Federici G, Caccuri AM, Ricci G, Adams JJ, Parker MW, Bello ML (2005) J Biol Chem 280:42172–42180

    Article  PubMed  CAS  Google Scholar 

  14. Kruszewski M (2003) Mutation Res 531:81–92

    PubMed  CAS  Google Scholar 

  15. Kurz T, Gustafsson B, Brunk UT (2006) FEBS J 273:3106–3117

    Article  PubMed  CAS  Google Scholar 

  16. Kroemer G, Jaattela M (2005) Nat Rev Cancer 5:886–897

    Article  PubMed  CAS  Google Scholar 

  17. Klionsky DJ, Emr SD (2000) Science 290:1717–1721

    Article  PubMed  CAS  Google Scholar 

  18. Cuervo AM, Dice JF (1998) J Mol Med 76:6–12

    Article  PubMed  CAS  Google Scholar 

  19. Roberts S, Bomford A (1988) J Biol Chem 263:19181–19187

    PubMed  CAS  Google Scholar 

  20. Radisky DC, Kaplan J (1998) Biochem J 336(Pt 1):201–205

    PubMed  Google Scholar 

  21. Persson HL, Nilsson KJ, Brunk UT (2001) Redox Rep 6:57–63

    Article  PubMed  CAS  Google Scholar 

  22. Yu Z, Persson HL, Eaton JW, Brunk UT (2003) Free Radic Biol Med 34:1243–1252

    Article  PubMed  CAS  Google Scholar 

  23. Tenopoulou M, Doulias PT, Barbouti A, Brunk U, Galaris D (2005) Biochem J 387:703–710

    Article  PubMed  CAS  Google Scholar 

  24. Persson HL, Kurz T, Eaton JW, Brunk UT (2005) Biochem J 389:877–884

    Article  PubMed  CAS  Google Scholar 

  25. Zanninelli G, Glickstein H, Breuer W, Milgram P, Brissot P, Hider RC, Konijn AM, Libman J, Shanzer A, Cabantchik ZI (1997) Mol Pharmacol 51:842–852

    PubMed  CAS  Google Scholar 

  26. Laub R, Schneider YJ, Octave JN, Trouet A, Crichton RR (1985) Biochem Pharmacol 34:1175–1183

    Article  PubMed  CAS  Google Scholar 

  27. Cable H, Lloyd JB (1999) J Pharm Pharmacol 51:131–134

    Article  PubMed  CAS  Google Scholar 

  28. Graham JM (1993) Methods Mol Biol 19:29–40

    PubMed  CAS  Google Scholar 

  29. Kennedy MC, Antholine WE, Beinert H (1997) J Biol Chem 272:20340–20347

    Article  PubMed  CAS  Google Scholar 

  30. Kurz T, Leake A, von Zglinicki T, Brunk UT (2004) Biochem J 378:1039–1045

    Article  PubMed  CAS  Google Scholar 

  31. de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, van Hoof F (1974) Biochem Pharmacol 23:2495–2531

    Article  PubMed  Google Scholar 

  32. Ignarro LJ (ed.) (2000) Nitric oxide: biology and pathobiology. Academic, San Diego

  33. Quintana C, Bellefqih S, Laval JY, Guerquin-Kern JL, Wu TD, Avila J, Ferrer I, Arranz R, Patino C (2006) J Struct Biol 153:42–54

    Article  PubMed  CAS  Google Scholar 

  34. Bienfait HF, van den Briel ML (1980) Biochim Biophys Acta 631:507–510

    PubMed  CAS  Google Scholar 

  35. Funk F, Lenders JP, Crichton RR, Schneider W (1985) Eur J Biochem 152:167–172

    Article  PubMed  CAS  Google Scholar 

  36. Bolann BJ, Ulvik RJ (1987) Biochem J 243:55–59

    PubMed  CAS  Google Scholar 

  37. Hernandez-Yago J, Knecht E, Martinez-Ramon A, Grisolia S (1980) Cell Tissue Res 205:303–309

    Article  PubMed  CAS  Google Scholar 

  38. Konijn AM, Glickstein H, Vaisman B, Meyron-Holtz EG, Slotki IN, Cabantchik ZI (1999) Blood 94:2128–2134

    PubMed  CAS  Google Scholar 

  39. Abouhamed M, Gburek J, Liu W, Torchalski B, Wilhelm A, Wolff NA, Christensen EI, Thevenod F, Smith CP (2006) Am J Physiol Renal Physiol 290:F1525–F1533

    Article  PubMed  CAS  Google Scholar 

  40. Gruper Y, Bar J, Bacharach E, Ehrlich R (2005) J Cell Physiol 204:901–912

    Article  PubMed  CAS  Google Scholar 

  41. Kwok JC, Richardson DR (2003) Mol Pharmacol 63:849–861

    Article  PubMed  CAS  Google Scholar 

  42. Kwok JC, Richardson DR (2004) Mol Pharmacol 65:181–195

    Article  PubMed  CAS  Google Scholar 

  43. Soum E, Drapier JC (2003) J Biol Inorg Chem 8:226–232

    Article  PubMed  CAS  Google Scholar 

  44. Lipinski P, Starzynski RR, Drapier JC, Bouton C, Bartlomiejczyk T, Sochanowicz B, Smuda E, Gajkowska A, Kruszewski M (2005) Biochem Biophys Res Commun 327:349–355

    Article  PubMed  CAS  Google Scholar 

  45. Petrat F, de Groot H, Rauen U (2001) Biochem J 356:61–69

    Article  PubMed  CAS  Google Scholar 

  46. Kalatzis V, Cherqui S, Antignac C, Gasnier B (2001) EMBO J 20:5940–5949

    Article  PubMed  CAS  Google Scholar 

  47. Cherqui S, Sevin C, Hamard G, Kalatzis V, Sich M, Pequignot MO, Gogat K, Abitbol M, Broyer M, Gubler MC, Antignac C (2002) Mol Cell Biol 22:7622–7632

    Article  PubMed  CAS  Google Scholar 

  48. Lloyd JB (1992) Biochem J 286(Pt 3):979–980

    PubMed  CAS  Google Scholar 

  49. Collins DS, Unanue ER, Harding CV (1991) J Immunol 147:4054–4059

    PubMed  CAS  Google Scholar 

  50. Jensen PE (1991) J Exp Med 174:1121–1130

    Article  PubMed  CAS  Google Scholar 

  51. Watts RN, Hawkins C, Ponka P, Richardson DR (2006) Proc Natl Acad Sci USA 103:7670–7675

    Article  PubMed  CAS  Google Scholar 

  52. Turella P, Pedersen JZ, Caccuri AM, De Maria F, Mastroberardino P, Lo BM, Federici G, Ricci G (2003) J Biol Chem 278:42294–42299

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a statutory grant for INTC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Kruszewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewandowska, H., Męczyńska, S., Sochanowicz, B. et al. Crucial role of lysosomal iron in the formation of dinitrosyl iron complexes in vivo. J Biol Inorg Chem 12, 345–352 (2007). https://doi.org/10.1007/s00775-006-0192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0192-8

Keywords

Navigation