Skip to main content
Log in

Wild-type CYP102A1 as a biocatalyst: turnover of drugs usually metabolised by human liver enzymes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

This work provides functional data showing that the bacterial CYP102A1 recognises compounds metabolised by human CYP3A4, CYP2E1 and CYP1A2 and is able to catalyse different reactions. Wild-type cytochrome CYP102A1 from Bacillus megaterium is a catalytically self-sufficient enzyme, containing an NADPH-dependent reductase and a P450 haem domain fused in a single polypeptidie chain. An NADPH-dependent method (Tsotsou et al. in Biosens. Bioelectron. 17:119–131, 2002) together with spectroscopic assays were applied to investigate the catalytic activity of CYP102A1 towards 19 xenobiotics, including 17 commercial drugs. These molecules were chosen to represent typical substrates of the five main families of drug-metabolising human cytochromes P450. Liquid chromatography–mass spectrometry analysis showed that CYP102A1 catalyses the hydroxylation of chlorzoxazone, aniline and p-nitrophenol, as well as the N-dealkylation of propranolol and the dehydrogenation of nifedipine. These drugs are typical substrates of human CYP2E1 and CYP3A4. The K M values calculated for these compounds were in the millimolar range: 1.21 ± 0.07 mM for chlorzoxazone, 2.52 ± 0.08 mM for aniline, 0.81 ± 0.04 mM for propranolol. The values of v max for chlorzoxazone and propranolol were 46.0 ± 9.0 and 7.6 ± 3.4 nmol min−1 nmol−1, respectively. These values are higher then those measured for the human enzymes. The v max value for aniline was 9.4 ± 1.3 nmol min−1 nmol−1, comparable to that calculated for human cytochromes P450. The functional data were found to be in line with the sequence alignments, showing that the identity percentage of CYP102A1 with CYP3A4 and CYP2E1 is higher than that found for CYP1A2, CYP2C9 and CYP2D6 families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guengerich FP (2003) Mol Interv 3:194–204

    Article  PubMed  CAS  Google Scholar 

  2. Ortiz de Montellano PR, De Voss JJ (2002) Nat Prod Rep 19:477–493

    Article  CAS  Google Scholar 

  3. Guengerich FP (2001) Curr Drug Metab 2:93–115

    Article  PubMed  CAS  Google Scholar 

  4. Luo G, Guenthner T, Gan LS, Humphreys WG (2004) Curr Drug Metab 5:483–505

    Article  PubMed  CAS  Google Scholar 

  5. Narhi LO, Fulco AJJ (1986) Biol Chem 261:7160–7169

    CAS  Google Scholar 

  6. Ravichandran KG, Boddupalli SS, Hasermann CA, Peterson JA, Deisenhofer J (1993) Science 261:731–736

    Article  PubMed  CAS  Google Scholar 

  7. Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE (2000) Mol Cell 5:121–131

    Article  PubMed  CAS  Google Scholar 

  8. Munro AW, Leys DG, McLean KJ, Marshall KR, Ost TW, Daff S, Miles CS, Chapman SK, Lysek DA, Moser CC, Page CC, Dutton PL (2002) Trends Biochem Sci 27:250–257

    Article  PubMed  CAS  Google Scholar 

  9. Noble MA, Miles CS, Chapman SK, Lysek DA, MacKay AC, Reid GA, Hanzlik RP, Munro AW (1999) Biochem J 339:371–379

    Article  PubMed  CAS  Google Scholar 

  10. Munro AW, Daff S, Coggins JR, Lindsay JG, Chapman SK (1996) Eur J Biochem 239:403–409

    Article  PubMed  CAS  Google Scholar 

  11. Miura Y, Fulco AJ (1975) Biochim Biophys Acta 388:305–317

    PubMed  CAS  Google Scholar 

  12. Ost TW, Miles CS, Murdoch J, Cheung Y, Reid GA, Chapman SK, Munro AW (2000) FEBS Lett 486:173–177

    Article  PubMed  CAS  Google Scholar 

  13. Seng Wong T, Arnold FH, Schwaneberg U (2004) Biotechnol Bioeng 85:351–358

    Article  PubMed  CAS  Google Scholar 

  14. Meinhold P, Peters MW, Chen MM, Takahashi K, Arnold FH (2005) Chembiochem 6:1765–1768

    Article  PubMed  CAS  Google Scholar 

  15. Lussenburg BM, Babel LC, Vermeulen NP, Commandeur JN (2005) Anal Biochem 341:148–155

    Article  PubMed  CAS  Google Scholar 

  16. Otey CR, Bandara G, Lalonde J, Takahashi K, Arnold FH (2005) Biotechnol Bioeng 93:494–499

    Article  CAS  Google Scholar 

  17. Tsotsou GE, Cass AE, Gilardi G (2002) Biosens Bioelectron 17:119–131

    Article  PubMed  CAS  Google Scholar 

  18. Li H, Poulos TL (1997) Nat Struct Biol 4:1400–1406

    Google Scholar 

  19. Fairhead MJ, Giannini S, Gillam EMJ, Gilardi G (2005) J Biol Inorg Chem 10:842–10853

    Article  PubMed  CAS  Google Scholar 

  20. Werringloer J (1978) Methods Enzymol 52:297–302

    Article  PubMed  CAS  Google Scholar 

  21. Semple HA, Xia F (1994) J Chromatogr B 655:293–299

    Article  CAS  Google Scholar 

  22. Streel B, Zimmer C, Sibenaler R, Ceccato A (1998) J Chromatogr B 720:119–128

    Article  CAS  Google Scholar 

  23. Wang RW, Newton DJ, Scheri TD, Lu AY (1997) Drug Metab Dispos 25:502–507

    PubMed  CAS  Google Scholar 

  24. Patki KC, Von Moltke LL, Greenblatt DJ (2003) Drug Metab Dispos 31:938–944

    Article  PubMed  CAS  Google Scholar 

  25. Narimatsu S, Kobayashi N, Masubuchi Y, Horie T, Kakegawa T, Kobayashi H, Hardwick JP, Gonzalez FJ, Shimada N, Ohmori S, Kitada M, Asaoka K, Kataoka H, Yamamoto S, Satoh T (2000) Chem Biol Interact 127:73–90

    Article  PubMed  CAS  Google Scholar 

  26. Gillam EM, Guo Z, Guengerich FP (1994) Arch Biochem Biophys 312:59–66

    Article  PubMed  CAS  Google Scholar 

  27. Yamazaki H, Nakano M, Gillam EM, Bell LC, Guengerich FP, Shimada T (1996) Biochem Pharmacol 52:301–309

    Article  PubMed  CAS  Google Scholar 

  28. Zhang TY, Zhu YX, Gunaratna C (2002) J Chromatogr B 780:371–379

    Article  CAS  Google Scholar 

  29. Loida PJ, Sligar SG (1993) Biochemistry 32:11530–11538

    Article  PubMed  CAS  Google Scholar 

  30. Beaudry F, Yves Le Blanc JC, Coutu M, Ramier I, Moreau JP, Brown NK (1999) Biomed Chromatogr 13:363–369

    Article  PubMed  CAS  Google Scholar 

  31. Zerilli A, Ratanasavanh D, Lucas D, Goasduff T, Dreano Y, Menard C, Picart D, Berthou F (1997) Chem Res Toxicol 10:1205–1212

    Google Scholar 

  32. Nedelcheva V, Gut I, Soucek P, Tichavska B, Tynkova L, Mraz J, Guengerich FP, Ingelman-Sundberg M (1999) Arch Toxicol 73:33–40

    Article  PubMed  CAS  Google Scholar 

  33. McGinnity DF, Parker AJ, Soars M, Riley RJ (2000) Drug Metab Dispos 28:1327–1334

    PubMed  CAS  Google Scholar 

  34. Peter R, Bocker R, Beaune PH, Iwasaki M, Guengerich FP, Yang CS (1990) Chem Res Toxicol 3:566–573

    Article  PubMed  CAS  Google Scholar 

  35. Tassaneeyakul W, Veronese ME, Birkett DJ, Miners JO (1993) J Chromatogr 616:73–78

    Article  PubMed  CAS  Google Scholar 

  36. Gorski JC, Jones DR, Wrighton SA, Hall SD (1997) Xenobiotica 27:243–256

    Article  PubMed  CAS  Google Scholar 

  37. Ono S, Hatanaka T, Hotta H, Tsutsui M, Satoh T, Gonzalez FJ (1995) Pharmacogenetics 5:143–150

    Article  PubMed  CAS  Google Scholar 

  38. Anari MR, Bakhtiar R, Franklin RB, Pearson PG, Bailliem TA (2003) Anal Chem 75:469–478

    Article  PubMed  Google Scholar 

  39. Guengerich FP, Martin MV, Beaune PH, Kremers P, Wolff T, Waxman DJ (1986) J Biol Chem 261:5051–5060

    PubMed  CAS  Google Scholar 

  40. Lewis DF, Watson E, Lake BG (1998) Mutat Res 410:245–270

    Article  PubMed  CAS  Google Scholar 

  41. Degtyarenko KN, Archakov AI (1993) FEBS Lett 332:1–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

G.D.N. and G.G. gratefully acknowledge the ISI foundation for a Lagrange postdoctoral fellowship and Programma di Ricareca di Interesse Nazionale (PRIN) for financial support. Thanks are due to Graham Taylor for help with MS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Gilardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Nardo, G., Fantuzzi, A., Sideri, A. et al. Wild-type CYP102A1 as a biocatalyst: turnover of drugs usually metabolised by human liver enzymes. J Biol Inorg Chem 12, 313–323 (2007). https://doi.org/10.1007/s00775-006-0188-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0188-4

Keywords

Navigation