Phosphorylation-dependent metal binding by α-synuclein peptide fragments

Abstract

α-Synuclein (α-syn) is the major protein component of the insoluble fibrils that make up Lewy bodies, the hallmark lesions of Parkinson’s disease. Its C-terminal region contains motifs of charged amino acids that potentially bind metal ions, as well as several identified phosphorylation sites. We have investigated the metal-binding properties of synthetic model peptides and phosphopeptides that correspond to residues 119–132 of the C-terminal, polyacidic stretch of human α-syn, with the sequence Ac-Asp-Pro-Asp-Asn-Glu-Ala-Tyr-Glu-Met-Pro-Ser-Glu-Glu-Gly (α-syn119–132). The peptide pY125 replaces tyrosine with phosphotyrosine, whereas pS129 replaces serine with phosphoserine. By using Tb3+ as a luminescent probe of metal binding, we find a marked selectivity of pY125 for Tb3+ compared with pS129 and α-syn119–132, a result confirmed by isothermal titration calorimetry. Truncated or alanine-substituted peptides show that the phosphoester group on tyrosine provides a metal-binding anchor that is supplemented by carboxylic acid groups at positions 119, 121, and 126 to establish a multidentate ligand, while two glutamic acid residues at positions 130 and 131 contribute to binding additional Tb3+ ions. The interaction of other metal ions was investigated by electrospray ionization mass spectrometry, which confirmed that pY125 is selective for trivalent metal ions over divalent metal ions, and revealed that Fe3+ and Al3+ induce peptide dimerization through metal ion cross-links. Circular dichroism showed that Fe3+ can induce a partially folded structure for pY125, whereas no change was observed for pS129 or the unphosphorylated analog. The results of this study show that the type and location of a phosphorylated amino acid influence a peptide’s metal-binding specificity and affinity as well as its overall conformation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Connor JR (ed) (1997) Metals and oxidative damage in neurological disorders. Plenum, New York

  2. 2.

    Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR (2004) Nat Rev Neurosci 5:863–873

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Barnham KJ, Masters CL, Bush AI (2004) Nat Rev Drug Discov 3:205–214

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Brown RC, Lockwood AH, Sonawane BR (2005) Environ Health Perspect 113:1250–1256

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Castellani RJ, Siedlak SL, Perry G, Smith MA (2000) Acta Neuropathol 100:111–114

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Hirsch EC, Brandel JP, Galle P, Javoyagid F, Agid Y (1991) J Neurochem 56:446–451

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Kahle PJ, Haass C, Kretzschmar HA, Neumann M (2002) J Neurochem 82:449–457

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Science 287:1265–1269

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuron 34:521–533

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Feany MB, Bender WW (2000) Nature 404:394–398

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PTJ (1996) Biochemistry 35:13709–13715

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Clayton DF, George JM (1999) J Neurosci Res 58:120–129

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Uversky VN, Li J, Fink AL (2001) J Biol Chem 276:44284–44296

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Yamin G, Glaser CB, Uversky VN, Fink AL (2003) J Biol Chem 278:27630–27635

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Paik SR, Shin H.-J, Lee J.-H, Chang C.-S, Kim J (1999) Biochem J 340:821–828

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Nielsen MS, Vorum H, Lindersson E, Jensen PH (2001) J Biol Chem 276:22680–22684

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Lowe R, Pountney DL, Jensen PH, Gai WP, Voelcker NH (2004) Protein Sci 13:3245–3252

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Rasia RM, Bertoncini CW, Marsh D, Hoyer W, Cherny D, Zweckstetter M, Griesinger C, Jovin TM, Fernández CO (2005) Proc Natl Acad Sci USA 102:4294–4299

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) Nat Cell Biol 4:160–164

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Ellis CE, Schwartzberg PL, Grider TL, Fink DW, Nussbaum RL (2001) J Biol Chem 276:3879–3884

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Okochi M, Walter J, Koyama A, Nakajo S, Baba M, Iwatsubo T, Meijer L, Kahle PJ Haass C (2000) J Biol Chem 275:390–397

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Pronin AN, Morris AJ, Surguchov A, Benovic JL (2000) J Biol Chem 275:26515–26522

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Takahashi M, Kanuka H, Fujiwara H, Koyama A, Hasegawa M, Miura M, Iwatsubo T (2003) Neurosci Lett 336:155–158

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Nakamura T, Yamashita H, Takahashi T, Nakamura S (2001) Biochem Biophys Res Commun 280:1085–1092

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Mirzaei H, Schieler JL, Rochet JC, Regnier F (2006) Anal Chem 78:2422–2431

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Tholey A, Lindemann A, Kinzel V, Reed J (1999) Biophys J 76:76–87

    PubMed  CAS  Google Scholar 

  27. 27.

    Andrew CD, Warwicker J, Jones GR, Doig AJ (2002) Biochemistry 41:1897–1905

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Errington N, Doig AJ (2005) Biochemistry 44:7553–7558

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Bielska AA, Zondlo NJ (2006) Biochemistry 45:5527–5537

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Signarvic RS, DeGrado WF (2003) J Mol Biol 334:1–12

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Hegenauer J, Saltman P, Nace G (1979) Biochemistry 18:3865–3879

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    George A, Bannon L, Sabsay B, Dillon JW, Malone J, Veis A, Jenkins NA, Gilbert DJ, Copel NG (1996) J Biol Chem 271:32869–32873

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sorensen ES, Boskey AL (2005) Calcif Tissue Int 77:45–54

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Yamamoto A, Shin R.-W, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T (2002) J Neurochem 82:1137–1147

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Hollósi M, Urge L, Perczel A, Kajtár J, Teplán I, Otvös L, Fasman GD (1992) J Mol Biol 223:673–682

    PubMed  Article  Google Scholar 

  36. 36.

    Shen ZM, Perczel A, Hollósi M, Nagypál I, Fasman GD (1994) Biochemistry 33:9627–9636

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Liu LL, Franz KJ (2005) J Am Chem Soc 127:9662–9663

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Balakrishnan S, Zondlo NJ (2006) J Am Chem Soc 128:5590–5591

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Cooper JA, Sefton BM, Hunter T (1983) Methods Enzymol 99:387–403

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) Protein Sci 4:2411–2423

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Pribil R (1967) Talanta 14:619–627

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Gampp H, Maeder M, Meyer CJ, Zuberbüehler AD (1985) Talanta 32:257–264

    CAS  Google Scholar 

  43. 43.

    Vàzquez-Ibar JL, Weinglass AB, Kaback HR (2002) Proc Natl Acad Sci USA 99:3487–3492

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Nakamura S, Yamashita H, Nagano Y, Takahashi T, Avraham S, Avraham H, Matsumoto M, Nakamura S (2002) FEBS Lett 521:190–194

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Takahashi T, Yamashita H, Nagano Y, Nakamura T, Ohmori H, Avraham H, Avraham S, Yasuda M, Matsumoto M (2003) J Biol Chem 278:42225–42233

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Negro A, Brunati AM, Donella-Deana A, Massimino ML, Pinna LA (2001) FASEB J 16:210–212

    PubMed  Google Scholar 

  47. 47.

    Richardson FS (1982) Chem Rev 82:541–552

    Article  CAS  Google Scholar 

  48. 48.

    Ojida A, Mito-oka Y, Sada K, Hamachi I (2004) J Am Chem Soc 126:2454–2463

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Herrero LA, Terron A (2000) J Biol Inorg Chem 5:269–275

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Hathout Y, Fabris D, Fenselau C (2001) Int J Mass Spectrom 204:1–6

    Article  CAS  Google Scholar 

  51. 51.

    Kramer ML, Kratzin HD, Schmidt B, Römer A, Windl O, Liemann S, Hornemann S, Kretzschmar H (2001) J Biol Chem 276:16711–16719

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Veenstra T, Johnson KL, Tomlinson AJ, Naylor S, Kumar R (1997) Biochemistry 36:3535–3542

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Urvoas A, Amekraz B, Moulin C, Le Clainche L, Stöcklin R, Moutiez M (2003) Rapid Commun Mass Spectrom 17:1889–1896

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) J Neurochem 52:1830–1836

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Brain 114:1953–1975

    PubMed  Article  Google Scholar 

  56. 56.

    Graham JM, Paley MNJ, Grünewald RA, Hoggard N, Griffiths PD (2000) Brain 123:2423–2431

    PubMed  Article  Google Scholar 

  57. 57.

    Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MBH (1991) J Neurochem 56:978–982

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Thong PSP, Watt F, Ponraj D, Leong SK, He Y, Lee TKY (1999) Nucl Instrum Methods Phys Res Sect B 158:349–355

    Article  CAS  Google Scholar 

  59. 59.

    Cole NB, Murphy DD, Lebowitz J, Di Noto L, Levine RL, Nussbaum RL (2005) J Biol Chem 280:9678–9690

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Ostrerova-Golts N, Petrucelli L, Hardy J, Lee JM, Farrer M, Wolozin B (2000) J Neurosci 20:6048–6054

    PubMed  CAS  Google Scholar 

  61. 61.

    Martin FL, Williamson SJM, Paleologou KE, Hewitt R, El-Agnaf OMA, Allsop D (2003) J Neurochem 87:620–630

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Corain B, Bombi GG Tapparo A, Perazzolo M, Zatta P (1996) Coord Chem Rev 149:11–22

    CAS  Google Scholar 

  63. 63.

    Exley C (1999) J Inorg Biochem 76:133–140

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Rubini P, Lakatos A, Champmartin D, Kiss T (2002) Coord Chem Rev 228:137–152

    Article  CAS  Google Scholar 

  65. 65.

    Hollender D, Karoly-Lakatos A, Forgo M, Kortvelyesi T, Dombi G, Majer Z, Holloi M, Kiss T, Odani A (2006) J Inorg Biochem 100:351–361

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Kiss E, Lakatos A, Banyai I, Kiss T (1998) J Inorg Biochem 69:145–151

    Article  CAS  Google Scholar 

  67. 67.

    Sung YH, Rospigliosi C, Eliezer D (2006) Biochim Biophys Acta 1764:5–12

    PubMed  CAS  Google Scholar 

  68. 68.

    Crowther RA, Jakes R, Spillantini MG, Goedert M (1998) FEBS Lett 436:309

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Hoyer W, Cherny D, Subramaniam V, Jovin TM (2004) Biochemistry 43:16233–16242

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Murray IVJ, Giasson BI, Quinn SM, Koppaka V, Axelsen PH, Ischiropoulos H, Trojanowski JQ, Lee VMY (2003) Biochemistry 42:8530–8540

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Bertoncini CW, Jung YS, Fernandez CO, Hoyer W, Griesinger C, Jovin TM, Zweckstetter M (2005) Proc Natl Acad Sci USA 102:1430–1435

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM (2005) J Am Chem Soc 127:476–477

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Bernadó P, Bertoncini CW, Griesinger C, Zweckstetter M, Blackledge M (2005) J Am Chem Soc 127:17968–17969

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Khan A, Ashcroft AE, Higenell V, Korchazhkina OV, Exley C (2005) J Inorg Biochem 99:1920–1927

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Ricchelli F, Buggio R, Drago D, Salmona M, Forloni G, Negro A, Tognon G, Zatta P (2006) Biochemistry 45:6724–6732

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Dong J, Shokes JE, Scott RA, Lynn DG (2006) J Am Chem Soc 128:3540–3542

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Shults MD, Imperiali B (2003) J Am Chem Soc 125:14248–14249

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for support provided by a National Science Foundation CAREER award (CHE-0449699). We thank Eric J. Toone, Andrea Luteran, and Trine Christensen for help with ITC experiments, and David A. Franz of Lycoming College for many helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katherine J. Franz.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, L.L., Franz, K.J. Phosphorylation-dependent metal binding by α-synuclein peptide fragments. J Biol Inorg Chem 12, 234–247 (2007). https://doi.org/10.1007/s00775-006-0181-y

Download citation

Keywords

  • Peptide
  • Binding affinity
  • Mass spectrometry
  • Luminescence
  • Protein engineering