Abstract
α-Synuclein (α-syn) is the major protein component of the insoluble fibrils that make up Lewy bodies, the hallmark lesions of Parkinson’s disease. Its C-terminal region contains motifs of charged amino acids that potentially bind metal ions, as well as several identified phosphorylation sites. We have investigated the metal-binding properties of synthetic model peptides and phosphopeptides that correspond to residues 119–132 of the C-terminal, polyacidic stretch of human α-syn, with the sequence Ac-Asp-Pro-Asp-Asn-Glu-Ala-Tyr-Glu-Met-Pro-Ser-Glu-Glu-Gly (α-syn119–132). The peptide pY125 replaces tyrosine with phosphotyrosine, whereas pS129 replaces serine with phosphoserine. By using Tb3+ as a luminescent probe of metal binding, we find a marked selectivity of pY125 for Tb3+ compared with pS129 and α-syn119–132, a result confirmed by isothermal titration calorimetry. Truncated or alanine-substituted peptides show that the phosphoester group on tyrosine provides a metal-binding anchor that is supplemented by carboxylic acid groups at positions 119, 121, and 126 to establish a multidentate ligand, while two glutamic acid residues at positions 130 and 131 contribute to binding additional Tb3+ ions. The interaction of other metal ions was investigated by electrospray ionization mass spectrometry, which confirmed that pY125 is selective for trivalent metal ions over divalent metal ions, and revealed that Fe3+ and Al3+ induce peptide dimerization through metal ion cross-links. Circular dichroism showed that Fe3+ can induce a partially folded structure for pY125, whereas no change was observed for pS129 or the unphosphorylated analog. The results of this study show that the type and location of a phosphorylated amino acid influence a peptide’s metal-binding specificity and affinity as well as its overall conformation.
This is a preview of subscription content, access via your institution.











References
- 1.
Connor JR (ed) (1997) Metals and oxidative damage in neurological disorders. Plenum, New York
- 2.
Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR (2004) Nat Rev Neurosci 5:863–873
- 3.
Barnham KJ, Masters CL, Bush AI (2004) Nat Rev Drug Discov 3:205–214
- 4.
Brown RC, Lockwood AH, Sonawane BR (2005) Environ Health Perspect 113:1250–1256
- 5.
Castellani RJ, Siedlak SL, Perry G, Smith MA (2000) Acta Neuropathol 100:111–114
- 6.
Hirsch EC, Brandel JP, Galle P, Javoyagid F, Agid Y (1991) J Neurochem 56:446–451
- 7.
Kahle PJ, Haass C, Kretzschmar HA, Neumann M (2002) J Neurochem 82:449–457
- 8.
Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Science 287:1265–1269
- 9.
Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuron 34:521–533
- 10.
Feany MB, Bender WW (2000) Nature 404:394–398
- 11.
Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PTJ (1996) Biochemistry 35:13709–13715
- 12.
Clayton DF, George JM (1999) J Neurosci Res 58:120–129
- 13.
Uversky VN, Li J, Fink AL (2001) J Biol Chem 276:44284–44296
- 14.
Yamin G, Glaser CB, Uversky VN, Fink AL (2003) J Biol Chem 278:27630–27635
- 15.
Paik SR, Shin H.-J, Lee J.-H, Chang C.-S, Kim J (1999) Biochem J 340:821–828
- 16.
Nielsen MS, Vorum H, Lindersson E, Jensen PH (2001) J Biol Chem 276:22680–22684
- 17.
Lowe R, Pountney DL, Jensen PH, Gai WP, Voelcker NH (2004) Protein Sci 13:3245–3252
- 18.
Rasia RM, Bertoncini CW, Marsh D, Hoyer W, Cherny D, Zweckstetter M, Griesinger C, Jovin TM, Fernández CO (2005) Proc Natl Acad Sci USA 102:4294–4299
- 19.
Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) Nat Cell Biol 4:160–164
- 20.
Ellis CE, Schwartzberg PL, Grider TL, Fink DW, Nussbaum RL (2001) J Biol Chem 276:3879–3884
- 21.
Okochi M, Walter J, Koyama A, Nakajo S, Baba M, Iwatsubo T, Meijer L, Kahle PJ Haass C (2000) J Biol Chem 275:390–397
- 22.
Pronin AN, Morris AJ, Surguchov A, Benovic JL (2000) J Biol Chem 275:26515–26522
- 23.
Takahashi M, Kanuka H, Fujiwara H, Koyama A, Hasegawa M, Miura M, Iwatsubo T (2003) Neurosci Lett 336:155–158
- 24.
Nakamura T, Yamashita H, Takahashi T, Nakamura S (2001) Biochem Biophys Res Commun 280:1085–1092
- 25.
Mirzaei H, Schieler JL, Rochet JC, Regnier F (2006) Anal Chem 78:2422–2431
- 26.
Tholey A, Lindemann A, Kinzel V, Reed J (1999) Biophys J 76:76–87
- 27.
Andrew CD, Warwicker J, Jones GR, Doig AJ (2002) Biochemistry 41:1897–1905
- 28.
Errington N, Doig AJ (2005) Biochemistry 44:7553–7558
- 29.
Bielska AA, Zondlo NJ (2006) Biochemistry 45:5527–5537
- 30.
Signarvic RS, DeGrado WF (2003) J Mol Biol 334:1–12
- 31.
Hegenauer J, Saltman P, Nace G (1979) Biochemistry 18:3865–3879
- 32.
George A, Bannon L, Sabsay B, Dillon JW, Malone J, Veis A, Jenkins NA, Gilbert DJ, Copel NG (1996) J Biol Chem 271:32869–32873
- 33.
Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sorensen ES, Boskey AL (2005) Calcif Tissue Int 77:45–54
- 34.
Yamamoto A, Shin R.-W, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T (2002) J Neurochem 82:1137–1147
- 35.
Hollósi M, Urge L, Perczel A, Kajtár J, Teplán I, Otvös L, Fasman GD (1992) J Mol Biol 223:673–682
- 36.
Shen ZM, Perczel A, Hollósi M, Nagypál I, Fasman GD (1994) Biochemistry 33:9627–9636
- 37.
Liu LL, Franz KJ (2005) J Am Chem Soc 127:9662–9663
- 38.
Balakrishnan S, Zondlo NJ (2006) J Am Chem Soc 128:5590–5591
- 39.
Cooper JA, Sefton BM, Hunter T (1983) Methods Enzymol 99:387–403
- 40.
Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) Protein Sci 4:2411–2423
- 41.
Pribil R (1967) Talanta 14:619–627
- 42.
Gampp H, Maeder M, Meyer CJ, Zuberbüehler AD (1985) Talanta 32:257–264
- 43.
Vàzquez-Ibar JL, Weinglass AB, Kaback HR (2002) Proc Natl Acad Sci USA 99:3487–3492
- 44.
Nakamura S, Yamashita H, Nagano Y, Takahashi T, Avraham S, Avraham H, Matsumoto M, Nakamura S (2002) FEBS Lett 521:190–194
- 45.
Takahashi T, Yamashita H, Nagano Y, Nakamura T, Ohmori H, Avraham H, Avraham S, Yasuda M, Matsumoto M (2003) J Biol Chem 278:42225–42233
- 46.
Negro A, Brunati AM, Donella-Deana A, Massimino ML, Pinna LA (2001) FASEB J 16:210–212
- 47.
Richardson FS (1982) Chem Rev 82:541–552
- 48.
Ojida A, Mito-oka Y, Sada K, Hamachi I (2004) J Am Chem Soc 126:2454–2463
- 49.
Herrero LA, Terron A (2000) J Biol Inorg Chem 5:269–275
- 50.
Hathout Y, Fabris D, Fenselau C (2001) Int J Mass Spectrom 204:1–6
- 51.
Kramer ML, Kratzin HD, Schmidt B, Römer A, Windl O, Liemann S, Hornemann S, Kretzschmar H (2001) J Biol Chem 276:16711–16719
- 52.
Veenstra T, Johnson KL, Tomlinson AJ, Naylor S, Kumar R (1997) Biochemistry 36:3535–3542
- 53.
Urvoas A, Amekraz B, Moulin C, Le Clainche L, Stöcklin R, Moutiez M (2003) Rapid Commun Mass Spectrom 17:1889–1896
- 54.
Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) J Neurochem 52:1830–1836
- 55.
Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Brain 114:1953–1975
- 56.
Graham JM, Paley MNJ, Grünewald RA, Hoggard N, Griffiths PD (2000) Brain 123:2423–2431
- 57.
Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MBH (1991) J Neurochem 56:978–982
- 58.
Thong PSP, Watt F, Ponraj D, Leong SK, He Y, Lee TKY (1999) Nucl Instrum Methods Phys Res Sect B 158:349–355
- 59.
Cole NB, Murphy DD, Lebowitz J, Di Noto L, Levine RL, Nussbaum RL (2005) J Biol Chem 280:9678–9690
- 60.
Ostrerova-Golts N, Petrucelli L, Hardy J, Lee JM, Farrer M, Wolozin B (2000) J Neurosci 20:6048–6054
- 61.
Martin FL, Williamson SJM, Paleologou KE, Hewitt R, El-Agnaf OMA, Allsop D (2003) J Neurochem 87:620–630
- 62.
Corain B, Bombi GG Tapparo A, Perazzolo M, Zatta P (1996) Coord Chem Rev 149:11–22
- 63.
Exley C (1999) J Inorg Biochem 76:133–140
- 64.
Rubini P, Lakatos A, Champmartin D, Kiss T (2002) Coord Chem Rev 228:137–152
- 65.
Hollender D, Karoly-Lakatos A, Forgo M, Kortvelyesi T, Dombi G, Majer Z, Holloi M, Kiss T, Odani A (2006) J Inorg Biochem 100:351–361
- 66.
Kiss E, Lakatos A, Banyai I, Kiss T (1998) J Inorg Biochem 69:145–151
- 67.
Sung YH, Rospigliosi C, Eliezer D (2006) Biochim Biophys Acta 1764:5–12
- 68.
Crowther RA, Jakes R, Spillantini MG, Goedert M (1998) FEBS Lett 436:309
- 69.
Hoyer W, Cherny D, Subramaniam V, Jovin TM (2004) Biochemistry 43:16233–16242
- 70.
Murray IVJ, Giasson BI, Quinn SM, Koppaka V, Axelsen PH, Ischiropoulos H, Trojanowski JQ, Lee VMY (2003) Biochemistry 42:8530–8540
- 71.
Bertoncini CW, Jung YS, Fernandez CO, Hoyer W, Griesinger C, Jovin TM, Zweckstetter M (2005) Proc Natl Acad Sci USA 102:1430–1435
- 72.
Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM (2005) J Am Chem Soc 127:476–477
- 73.
Bernadó P, Bertoncini CW, Griesinger C, Zweckstetter M, Blackledge M (2005) J Am Chem Soc 127:17968–17969
- 74.
Khan A, Ashcroft AE, Higenell V, Korchazhkina OV, Exley C (2005) J Inorg Biochem 99:1920–1927
- 75.
Ricchelli F, Buggio R, Drago D, Salmona M, Forloni G, Negro A, Tognon G, Zatta P (2006) Biochemistry 45:6724–6732
- 76.
Dong J, Shokes JE, Scott RA, Lynn DG (2006) J Am Chem Soc 128:3540–3542
- 77.
Shults MD, Imperiali B (2003) J Am Chem Soc 125:14248–14249
Acknowledgements
We are grateful for support provided by a National Science Foundation CAREER award (CHE-0449699). We thank Eric J. Toone, Andrea Luteran, and Trine Christensen for help with ITC experiments, and David A. Franz of Lycoming College for many helpful discussions.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, L.L., Franz, K.J. Phosphorylation-dependent metal binding by α-synuclein peptide fragments. J Biol Inorg Chem 12, 234–247 (2007). https://doi.org/10.1007/s00775-006-0181-y
Received:
Accepted:
Published:
Issue Date:
Keywords
- Peptide
- Binding affinity
- Mass spectrometry
- Luminescence
- Protein engineering