Skip to main content
Log in

Quantification of single-stranded nucleic acid and oligonucleotide interactions with metal ions by affinity capillary electrophoresis: part I

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The interactions between oligonucleotides and inorganic cations have been measured by capillary zone electrophoresis. With increasing concentrations of divalent cations (Ca2+, Mg2+, Mn2+ and Ni2+) in the running buffer, the migration behavior was evaluated by calculation of the binding constants. Besides these fundamental studies of binding equilibria, different buffer components, tris(hydroxymethyl)aminomethane and 3-(N-morpholino)propanesulfonic acid, have been investigated and their effects on metal ion binding quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3

Similar content being viewed by others

References

  1. Human Genome Program (2003) Genomics and its impact on science and society: a 2003 Primer. US Department of Energy

  2. Sigel H (ed) (1979) Metal ions in biological systems, vol 8. Nucleotides and derivatives: their ligating ambivalency

  3. Sigel A, Sigel H (eds) (1996) Metal ions in biological systems, vol 32. Interactions of metal ions with nucleotides, nucleic acids, and their constituents

  4. Sigel A, Sigel H (eds) (1996) Metal ions in biological systems, vol 33. Probing of nucleic acids by metal ion complexes of small molecules

  5. de la Fuente M, Hernanz A, Navarro R (2004) J Biol Inorg Chem 9:973–986

    Article  CAS  Google Scholar 

  6. Kankia BI (2004) Biopolymers 74:232–239

    Article  PubMed  CAS  Google Scholar 

  7. Sigel H, Griesser R (2005) Chem Soc Rev 34:875–900

    Article  PubMed  CAS  Google Scholar 

  8. He XY, Ding YS, Li DZ, Lin BC (2004) Electrophoresis 25:697–711

    Article  PubMed  CAS  Google Scholar 

  9. Heegaard NHH (2003) Electrophoresis 24:3879–3891

    Article  PubMed  CAS  Google Scholar 

  10. Guijt-van Duijn RM, Frank J, van Dedem GWK, Baltussen E, Schalkhammer T (2001) Electrophoresis 22:1247–1247

    Google Scholar 

  11. Arakawa H, Neault JF, Tajmir-Riahi HA (2001) Biophys J 81:1580–1587

    PubMed  CAS  Google Scholar 

  12. Ahmad R, Arakawa H, Tajmir-Riahi HA (2003) Biophys J 84:2460–2466

    Article  PubMed  CAS  Google Scholar 

  13. Ouameur AA, Arakawa H, Ahmad R, Naoui M, Tajmir-Riahi HA (2005) DNA Cell Biol 24:394–401

    Article  PubMed  CAS  Google Scholar 

  14. Hjertén S (1985) J Chromatogr A 347:191–198

    Article  Google Scholar 

  15. Rüttinger H-H (2003) In: Neubert RHH, Rüttinger H-H (eds) Affinity capillary electrophoresis in pharmaceutics and biopharmaceutics. Dekker, New York, pp 23–43

  16. Stellwagen NC, Bossi A, Gelfi C, Righetti PG (2000) Anal Biochem 287:167–175

    Article  PubMed  CAS  Google Scholar 

  17. Sokołowska M, Bal W (2005) J Inorg Biochem 99:1653–1660

    Article  PubMed  CAS  Google Scholar 

  18. Taha M, Khalil MM, Mohamed SA (2005) J Chem Eng Data 50:882–887

    Article  CAS  Google Scholar 

  19. Good NE, Winget GD, inter W, Connolly TN, Izawa S, Singh RMM (1966) Biochemistry 5:467–477

    Article  PubMed  CAS  Google Scholar 

  20. Fischer BE, Haring UK, Tribolet R, Sigel H (1979) Eur J Biochem 94:523–530

    Article  PubMed  CAS  Google Scholar 

  21. Ouameur AA, Tajmir-Riahi H-A (2004) J Biol Chem 279:42041–42054

    Article  PubMed  CAS  Google Scholar 

  22. Shihabia SK (2000) Electrophoresis 21:2872–2878

    Article  Google Scholar 

  23. Hall JL, Liden TM, Swisher JA, Brannon DG (1962) Inorg Chem 1:409–413

    Article  CAS  Google Scholar 

  24. Bai KS, Martell AE (1969) J Inorg Nucl Chem 31:1697–1707

    Article  CAS  Google Scholar 

  25. Brignac PJ, Mo C (1975) Anal Chem 47:1465–1466

    Article  CAS  Google Scholar 

  26. Bologni L, Sabatini A, Vacca A (1983) Inorg Chim Acta 69:71–75

    Article  CAS  Google Scholar 

  27. Canepari S, Carunchio V, Schina R (1999) Polyhedron 18:3263–3267

    Article  CAS  Google Scholar 

  28. Rao GN, Murthy CSR, Prakash A (1982) Indian J Chem A 21:203–205

    Google Scholar 

  29. Forsling W (1978) Acta Chem Scand A 32:857–865

    Article  Google Scholar 

  30. Azab HA, Orabi AS, El-Salam ETA (2001) J Chem Eng Data 46:346–254

    Article  CAS  Google Scholar 

  31. Anwar Z, Azab H (1999) J Chem Eng Data 44:1151–1157

    Article  CAS  Google Scholar 

  32. Okafo GN, Brown R, Camilleri (1991) J Chem Soc Chem Commun 864–866

  33. Fujimoto BS, Miller JM, Ribeiro NS, Schurr JM (1994) Biophys J 67:304–308

    PubMed  CAS  Google Scholar 

  34. Kell GS (1972) In: Franks F (ed) Water—a comprehensive treatise. Plenum, New York, p 406

  35. Ivarsson GJM (1982) Acta Crystallogr Sect B 38:1828–1831

    Article  Google Scholar 

  36. Zeng M-H, Liang H, Zeng R-Y, Yi X-H, Yu K-B (2002) Acta Chim Sin 60:784–788

    CAS  Google Scholar 

  37. Packer MJ, Dauncey MP, Hunter CA (2000) J Mol Biol 295:85–103

    Article  PubMed  CAS  Google Scholar 

  38. Dixit SB, Beveridge DL, Case DA, Cheatham TE, Giudice E, Lankas F, Lavery R, Maddocks JH, Osman R, Sklenar H, Thayer KM, Varnai P (2005) Biophys J 89:3721–3740

    Article  PubMed  CAS  Google Scholar 

  39. Egli M (2004) Curr Opin Chem Biol 8:580–591

    Article  PubMed  CAS  Google Scholar 

  40. Abrescia NGA, Huynh-Dinh T, Subirana JA (2002) J Biol Inorg Chem 7:195–199

    Article  PubMed  CAS  Google Scholar 

  41. Sponer J, Sabat M, Gorb L, Leszczynski J, Lippert B, Hobza P (2000) J Phys Chem B 104:7535–7544

    Article  CAS  Google Scholar 

  42. Soler-López M, Malinina L, Subirana JA (2000) J Biol Chem 275:23034–23043

    Article  PubMed  Google Scholar 

  43. Chiu TK, Dickerson RE (2000) J Mol Biol 301:915–945

    Article  PubMed  CAS  Google Scholar 

  44. Valls N, Usón I, Gouyette C, Subirana JA (2004) J Am Chem Soc 126:7812–7816

    Article  PubMed  CAS  Google Scholar 

  45. Gao YG, Sriram K, Wang AH (1993) Nucl Acid Res 21:4093–4101

    Article  CAS  Google Scholar 

  46. Abrescia NGA, Malinina L, Subirana JA (1999) J Mol Biol 294:657–666

    Article  PubMed  CAS  Google Scholar 

  47. Subirana JA, Abrescia NGA (2000) Biophys Chem 86:179–189

    Article  PubMed  CAS  Google Scholar 

  48. Abrescia NGA, Malinina L, Fernández LG, Hunyh-Dinh T, Neidle S, Subirana JA (1999) Nucleic Acid Res 27:1593–1599

    Article  PubMed  CAS  Google Scholar 

  49. Yang XI, Robinson H, Gao YG, Wang AH-J (2000) Biochemistry 39:10950–10957

    Article  PubMed  CAS  Google Scholar 

  50. De Meester P, Goodgame DML, Skapski AC, Smith BT (1974) Biochim Biophys Acta 340:113–115

    PubMed  Google Scholar 

  51. Collins AD, De Meester P, Goodgame DML, Skapski AC (1975) Biochim Biophys Acta 116:2958–2971

    Google Scholar 

  52. Sigel H, Massoud SS, Corfu NA (1994) J Am Chem Soc 116:2958–2971

    Article  CAS  Google Scholar 

  53. Labiuk SL, Delbaere LTJ, Lee JS (2003) J Biol Inorg Chem 8:715–720

    Article  PubMed  CAS  Google Scholar 

  54. Hartzell B, McCord B (2005) Electrophoresis 26:1046–1056

    Article  PubMed  CAS  Google Scholar 

  55. Simonsson T (2001) Biol Chem 382:621–628

    Article  PubMed  CAS  Google Scholar 

  56. Guschlbauer W, Chantot JF, Thiele D (1990) J Biomol Struct Dyn 8:491–511

    PubMed  CAS  Google Scholar 

  57. Sen D, Gilbert W (1992) Methods Enzymol 211:191–199

    PubMed  CAS  Google Scholar 

  58. Blume SW, Guarcello V, Zacharias W, Miller DM (1997) Nucleic Acid Res 25:617–625

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Shimadzu Corporation and the University of Basel for their kind support. We also thank Yorck-Michael Neuhold for constructive discussions. Partial funding for this project was provided by Swiss National Science Foundation, grant numbers 200021-103812/1 and 20C321-101122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Schwarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stettler, A.R., Chaurin, V., Constable, E.C. et al. Quantification of single-stranded nucleic acid and oligonucleotide interactions with metal ions by affinity capillary electrophoresis: part I. J Biol Inorg Chem 12, 194–203 (2007). https://doi.org/10.1007/s00775-006-0180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0180-z

Keywords

Navigation