JBIC Journal of Biological Inorganic Chemistry

, Volume 12, Issue 2, pp 194–203 | Cite as

Quantification of single-stranded nucleic acid and oligonucleotide interactions with metal ions by affinity capillary electrophoresis: part I

  • Alexandra R. Stettler
  • Valérie Chaurin
  • Edwin C. Constable
  • Catherine E. Housecroft
  • Maria A. SchwarzEmail author
Original Paper


The interactions between oligonucleotides and inorganic cations have been measured by capillary zone electrophoresis. With increasing concentrations of divalent cations (Ca2+, Mg2+, Mn2+ and Ni2+) in the running buffer, the migration behavior was evaluated by calculation of the binding constants. Besides these fundamental studies of binding equilibria, different buffer components, tris(hydroxymethyl)aminomethane and 3-(N-morpholino)propanesulfonic acid, have been investigated and their effects on metal ion binding quantified.


Affinity capillary electrophoresis Buffer Oligonucleotide Metal cation 



We would like to thank Shimadzu Corporation and the University of Basel for their kind support. We also thank Yorck-Michael Neuhold for constructive discussions. Partial funding for this project was provided by Swiss National Science Foundation, grant numbers 200021-103812/1 and 20C321-101122.


  1. 1.
    Human Genome Program (2003) Genomics and its impact on science and society: a 2003 Primer. US Department of EnergyGoogle Scholar
  2. 2.
    Sigel H (ed) (1979) Metal ions in biological systems, vol 8. Nucleotides and derivatives: their ligating ambivalencyGoogle Scholar
  3. 3.
    Sigel A, Sigel H (eds) (1996) Metal ions in biological systems, vol 32. Interactions of metal ions with nucleotides, nucleic acids, and their constituentsGoogle Scholar
  4. 4.
    Sigel A, Sigel H (eds) (1996) Metal ions in biological systems, vol 33. Probing of nucleic acids by metal ion complexes of small moleculesGoogle Scholar
  5. 5.
    de la Fuente M, Hernanz A, Navarro R (2004) J Biol Inorg Chem 9:973–986CrossRefGoogle Scholar
  6. 6.
    Kankia BI (2004) Biopolymers 74:232–239PubMedCrossRefGoogle Scholar
  7. 7.
    Sigel H, Griesser R (2005) Chem Soc Rev 34:875–900PubMedCrossRefGoogle Scholar
  8. 8.
    He XY, Ding YS, Li DZ, Lin BC (2004) Electrophoresis 25:697–711PubMedCrossRefGoogle Scholar
  9. 9.
    Heegaard NHH (2003) Electrophoresis 24:3879–3891PubMedCrossRefGoogle Scholar
  10. 10.
    Guijt-van Duijn RM, Frank J, van Dedem GWK, Baltussen E, Schalkhammer T (2001) Electrophoresis 22:1247–1247Google Scholar
  11. 11.
    Arakawa H, Neault JF, Tajmir-Riahi HA (2001) Biophys J 81:1580–1587PubMedGoogle Scholar
  12. 12.
    Ahmad R, Arakawa H, Tajmir-Riahi HA (2003) Biophys J 84:2460–2466PubMedCrossRefGoogle Scholar
  13. 13.
    Ouameur AA, Arakawa H, Ahmad R, Naoui M, Tajmir-Riahi HA (2005) DNA Cell Biol 24:394–401PubMedCrossRefGoogle Scholar
  14. 14.
    Hjertén S (1985) J Chromatogr A 347:191–198CrossRefGoogle Scholar
  15. 15.
    Rüttinger H-H (2003) In: Neubert RHH, Rüttinger H-H (eds) Affinity capillary electrophoresis in pharmaceutics and biopharmaceutics. Dekker, New York, pp 23–43Google Scholar
  16. 16.
    Stellwagen NC, Bossi A, Gelfi C, Righetti PG (2000) Anal Biochem 287:167–175PubMedCrossRefGoogle Scholar
  17. 17.
    Sokołowska M, Bal W (2005) J Inorg Biochem 99:1653–1660PubMedCrossRefGoogle Scholar
  18. 18.
    Taha M, Khalil MM, Mohamed SA (2005) J Chem Eng Data 50:882–887CrossRefGoogle Scholar
  19. 19.
    Good NE, Winget GD, inter W, Connolly TN, Izawa S, Singh RMM (1966) Biochemistry 5:467–477PubMedCrossRefGoogle Scholar
  20. 20.
    Fischer BE, Haring UK, Tribolet R, Sigel H (1979) Eur J Biochem 94:523–530PubMedCrossRefGoogle Scholar
  21. 21.
    Ouameur AA, Tajmir-Riahi H-A (2004) J Biol Chem 279:42041–42054PubMedCrossRefGoogle Scholar
  22. 22.
    Shihabia SK (2000) Electrophoresis 21:2872–2878CrossRefGoogle Scholar
  23. 23.
    Hall JL, Liden TM, Swisher JA, Brannon DG (1962) Inorg Chem 1:409–413CrossRefGoogle Scholar
  24. 24.
    Bai KS, Martell AE (1969) J Inorg Nucl Chem 31:1697–1707CrossRefGoogle Scholar
  25. 25.
    Brignac PJ, Mo C (1975) Anal Chem 47:1465–1466CrossRefGoogle Scholar
  26. 26.
    Bologni L, Sabatini A, Vacca A (1983) Inorg Chim Acta 69:71–75CrossRefGoogle Scholar
  27. 27.
    Canepari S, Carunchio V, Schina R (1999) Polyhedron 18:3263–3267CrossRefGoogle Scholar
  28. 28.
    Rao GN, Murthy CSR, Prakash A (1982) Indian J Chem A 21:203–205Google Scholar
  29. 29.
    Forsling W (1978) Acta Chem Scand A 32:857–865CrossRefGoogle Scholar
  30. 30.
    Azab HA, Orabi AS, El-Salam ETA (2001) J Chem Eng Data 46:346–254CrossRefGoogle Scholar
  31. 31.
    Anwar Z, Azab H (1999) J Chem Eng Data 44:1151–1157CrossRefGoogle Scholar
  32. 32.
    Okafo GN, Brown R, Camilleri (1991) J Chem Soc Chem Commun 864–866Google Scholar
  33. 33.
    Fujimoto BS, Miller JM, Ribeiro NS, Schurr JM (1994) Biophys J 67:304–308PubMedGoogle Scholar
  34. 34.
    Kell GS (1972) In: Franks F (ed) Water—a comprehensive treatise. Plenum, New York, p 406Google Scholar
  35. 35.
    Ivarsson GJM (1982) Acta Crystallogr Sect B 38:1828–1831CrossRefGoogle Scholar
  36. 36.
    Zeng M-H, Liang H, Zeng R-Y, Yi X-H, Yu K-B (2002) Acta Chim Sin 60:784–788Google Scholar
  37. 37.
    Packer MJ, Dauncey MP, Hunter CA (2000) J Mol Biol 295:85–103PubMedCrossRefGoogle Scholar
  38. 38.
    Dixit SB, Beveridge DL, Case DA, Cheatham TE, Giudice E, Lankas F, Lavery R, Maddocks JH, Osman R, Sklenar H, Thayer KM, Varnai P (2005) Biophys J 89:3721–3740PubMedCrossRefGoogle Scholar
  39. 39.
    Egli M (2004) Curr Opin Chem Biol 8:580–591PubMedCrossRefGoogle Scholar
  40. 40.
    Abrescia NGA, Huynh-Dinh T, Subirana JA (2002) J Biol Inorg Chem 7:195–199PubMedCrossRefGoogle Scholar
  41. 41.
    Sponer J, Sabat M, Gorb L, Leszczynski J, Lippert B, Hobza P (2000) J Phys Chem B 104:7535–7544CrossRefGoogle Scholar
  42. 42.
    Soler-López M, Malinina L, Subirana JA (2000) J Biol Chem 275:23034–23043PubMedCrossRefGoogle Scholar
  43. 43.
    Chiu TK, Dickerson RE (2000) J Mol Biol 301:915–945PubMedCrossRefGoogle Scholar
  44. 44.
    Valls N, Usón I, Gouyette C, Subirana JA (2004) J Am Chem Soc 126:7812–7816PubMedCrossRefGoogle Scholar
  45. 45.
    Gao YG, Sriram K, Wang AH (1993) Nucl Acid Res 21:4093–4101CrossRefGoogle Scholar
  46. 46.
    Abrescia NGA, Malinina L, Subirana JA (1999) J Mol Biol 294:657–666PubMedCrossRefGoogle Scholar
  47. 47.
    Subirana JA, Abrescia NGA (2000) Biophys Chem 86:179–189PubMedCrossRefGoogle Scholar
  48. 48.
    Abrescia NGA, Malinina L, Fernández LG, Hunyh-Dinh T, Neidle S, Subirana JA (1999) Nucleic Acid Res 27:1593–1599PubMedCrossRefGoogle Scholar
  49. 49.
    Yang XI, Robinson H, Gao YG, Wang AH-J (2000) Biochemistry 39:10950–10957PubMedCrossRefGoogle Scholar
  50. 50.
    De Meester P, Goodgame DML, Skapski AC, Smith BT (1974) Biochim Biophys Acta 340:113–115PubMedGoogle Scholar
  51. 51.
    Collins AD, De Meester P, Goodgame DML, Skapski AC (1975) Biochim Biophys Acta 116:2958–2971Google Scholar
  52. 52.
    Sigel H, Massoud SS, Corfu NA (1994) J Am Chem Soc 116:2958–2971CrossRefGoogle Scholar
  53. 53.
    Labiuk SL, Delbaere LTJ, Lee JS (2003) J Biol Inorg Chem 8:715–720PubMedCrossRefGoogle Scholar
  54. 54.
    Hartzell B, McCord B (2005) Electrophoresis 26:1046–1056PubMedCrossRefGoogle Scholar
  55. 55.
    Simonsson T (2001) Biol Chem 382:621–628PubMedCrossRefGoogle Scholar
  56. 56.
    Guschlbauer W, Chantot JF, Thiele D (1990) J Biomol Struct Dyn 8:491–511PubMedGoogle Scholar
  57. 57.
    Sen D, Gilbert W (1992) Methods Enzymol 211:191–199PubMedGoogle Scholar
  58. 58.
    Blume SW, Guarcello V, Zacharias W, Miller DM (1997) Nucleic Acid Res 25:617–625PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2006

Authors and Affiliations

  • Alexandra R. Stettler
    • 1
  • Valérie Chaurin
    • 1
  • Edwin C. Constable
    • 1
  • Catherine E. Housecroft
    • 1
  • Maria A. Schwarz
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of BaselBaselSwitzerland

Personalised recommendations