Skip to main content
Log in

Catecholase activity of dicopper(II)-bispidine complexes: stabilities and structures of intermediates, kinetics and reaction mechanism

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A mechanism for the oxidation of 3,5-di-tert-butylcatechol (dtbc) with dioxygen to the corresponding quinone (dtbq), catalyzed by bispidine-dicopper complexes (bispidines are various mono- and dinucleating derivatives of 3,7-diazabicyclo[3.3.1]nonane with bis-tertiary-amine–bispyridyl or bis-tertiary-amine–trispyridyl donor sets), is proposed on the basis of (1) the stoichiometry of the reaction as well as the stabilities and structures [X-ray, density functional theory (B3LYP, TZV)] of the bispidine-dicopper(II)–3,4,5,6-tetrachlorcatechol intermediates, (2) formation kinetics and structures (molecular mechanics, MOMEC) of the end-on peroxo–dicopper(II) complexes and (3) kinetics of the stoichiometric (anaerobic) and catalytic (aerobic) copper-complex-assisted oxidation of dtbc. This involves (1) the oxidation of the dicopper(I) complexes with dioxygen to the corresponding end-on peroxo–dicopper(II) complexes, (2) coordination of dtbc as a bridging ligand upon liberation of H2O2 and (3) intramolecular electron transfer to produce dtbq, which is liberated, and the dicopper(I) catalyst. Although the bispidine complexes have reactivities comparable to those of recently published catalysts with macrocyclic ligands, which seem to reproduce the enzyme-catalyzed process in various reaction sequences, a strikingly different oxidation mechanism is derived from the bispidine–dicopper-catalyzed reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liang H-C, Dahan M, Karlin KD (1999) Curr Opin Chem Biol 3:168

    Article  PubMed  CAS  Google Scholar 

  2. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563

    Article  PubMed  CAS  Google Scholar 

  3. Meunier B (2000) In: Meunier EB (ed.) Biomimetic oxidations catalyzed by transition metal complexes. Imperial College Press, London

  4. Meunier B (2000) In: Meunier EB (ed.) Structure and bonding, vol 97. Springer, Berlin Heidelberg New York

  5. Reedijk J (1993) Bioinorganic catalysis. Dekker, New York

  6. Solomon EI (2001) Inorg Chem 40:3656

    Article  PubMed  CAS  Google Scholar 

  7. Schindler S (2000) Eur J Inorg Chem 2311

  8. Hatcher LQ, Karlin VD (2004) J Biol Inorg Chem 9:669

    Article  PubMed  CAS  Google Scholar 

  9. Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939

    Article  PubMed  CAS  Google Scholar 

  10. Lewis EA, Tolman WB (2004) Chem Rev 104:1047

    Article  PubMed  CAS  Google Scholar 

  11. Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013

    Article  PubMed  CAS  Google Scholar 

  12. Hikichi S, Akita M, Moro-oka Y (2000) Coord Chem Rev 198:61

    Google Scholar 

  13. Duran N, Esposito E (2000) Appl Catal B 28:83

    Article  CAS  Google Scholar 

  14. da Silva GFZ, Tay WM, Ming L-J (2005) J Biol Chem 280:16601

    Article  PubMed  CAS  Google Scholar 

  15. Limberg C (2003) Angew Chem 115:6112

    Article  Google Scholar 

  16. Hage R, Iburg JE, Kerschner J, Koek JH, Lempers ELM, Martens RJ, Racheria US, Russell SW, Swarthoff T, van MRP Vliet, Warnaar JB, van L der Wolf, Krijnen B (1994) Nature 369:637

    Article  CAS  Google Scholar 

  17. Hage R, Lienke A (2006) Angew Chem 118:212

    Article  Google Scholar 

  18. Kitajima N (1994) Advances in inorganic chemistry, vol 39. Academic, New York, p 1

  19. Volbeda A, Hol WGJ (1989) J Mol Biol 209:249

    Article  PubMed  CAS  Google Scholar 

  20. Magnus KA, Ton-That H, Carpenter JE (1993) In: Karlin KD, Tyeklar Z (eds) Bioinorganic chemistry of copper. New York, p 143

  21. Klabunde T, Eicken C, Saccettini JC, Krebs B (1998) Nat Struct Biol 5:1084

    Article  PubMed  CAS  Google Scholar 

  22. Matoba Y, Dumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) J Biol Chem 281:8981

    Article  PubMed  CAS  Google Scholar 

  23. Karlin KD, Nanthakumar A, Fox S, Murthy NN, Ravi N, Huynh BH, Orosz RD, Day EP (1994) J Am Chem 116:4753

    Article  CAS  Google Scholar 

  24. Börzel H, Comba P, Hagen KS, Kerscher M, Pritzkow H, Schatz M, Schindler S, Walter O (2002) Inorg Chem 41:5440

    Article  PubMed  Google Scholar 

  25. Kitajima N, Fujisawa K, Fujimoto C, Moro-oka Y, Hashimoto S, Kitagawa T, Toriumi K, Tatsumi K, Nakamura A (1992) J Am Chem Soc 114:1277

    Article  CAS  Google Scholar 

  26. Tolman WB (1997) Acc Chem Res 30:227

    Article  CAS  Google Scholar 

  27. Koval IA, Belle C, Selmeczi K, Philouze C, Saint-Aman E, Schuitema AM, Gamez P, Pierre J-L, Reedijk J (2005) J Biol Inorg Chem 10:739

    Article  PubMed  CAS  Google Scholar 

  28. Monzani E, Battaini G, Perotti A, Casella L, Gullotti M, Santagostini L, Nardin G, Randaccio L, Geremia S, Zanello P, Opromolla G (1999) Inorg Chem 38:5359

    Article  CAS  Google Scholar 

  29. Granata A, Monzani E, Casella L (2004) J Biol Inorg Chem 9:903

    Article  PubMed  CAS  Google Scholar 

  30. Metz M, Solomon EI (2001) J Am Chem Soc 123:4938

    Article  PubMed  CAS  Google Scholar 

  31. Eicken C, Krebs B, Sacchettini JC (1999) Curr Opin Chem Biol 9:677

    CAS  Google Scholar 

  32. Ackermann J, Meyer F, Kaifer E, Pritzkow H (2002) Chem Eur J 8:247

    Article  CAS  Google Scholar 

  33. Senior SZ, Mans LL, VanGuilder HD, Kelly KA, Hendrich MP, Elgren TE (2003) Biochemistry 42:4392

    Article  PubMed  CAS  Google Scholar 

  34. Börzel H, Comba P, Pritzkow H (2001) J Chem Soc Chem Commun 97

  35. Börzel H, Comba P, Katsichtis C, Kiefer W, Lienke A, Nagel V, Pritzkow H (1999) Chem Eur J 5:1716

    Article  Google Scholar 

  36. Börzel H, Comba P, Hagen KS, Katsichtis C, Pritzkow H (2000) Chem Eur J 6:914

    Article  Google Scholar 

  37. Comba P, Lienke A (2001) Inorg Chem 40:5206

    Article  PubMed  CAS  Google Scholar 

  38. Comba P, Kerscher M, Roodt A (2004) Eur J Inorg Chem 23:4640

    Article  Google Scholar 

  39. Pascaly M, Duda M, Schweppe F, Zurlinden K, Müller FK, Krebs B (2001) J Chem Soc Dalton Trans 828

  40. Karlin KD, Gultneh Y, Nicholson T, Zubieta J (1985) Inorg Chem 24:3725

    Article  CAS  Google Scholar 

  41. Comba P, Hauser A, Kerscher M, Pritzkow H (2003) Angew Chem Int Ed Engl 42:4536

    Article  PubMed  CAS  Google Scholar 

  42. Monzani E, Quinti L, Perotti A, Casella L, Gullotti M, Randaccio L, Geremia S, Nardin G, Faleschini P, Tabbi G (1998) Inorg Chem 37:553

    Article  PubMed  CAS  Google Scholar 

  43. Reim J, Krebs B (1997) J Chem Soc Dalton Trans 3793

  44. Torelli S, Bells C, Hamman S, Pierre J-L (2002) Inorg Chem

  45. Sheldrick GM (2004) In: Göttingen U (ed) SADABS-2004/1.Bruker AXS edn

  46. Sluis v d P, Spek AL (1990) Acta Crystallogr Sect A 46:194

    Google Scholar 

  47. Beurskens PT, Beurskens G, de Gelder R, Ganda SG, Gould RO, Israel R, Smits JMM (1999) DIRDIF-99 edn, University of Nijmegen, The Netherlands

  48. Sheldrick GM (1997) SHELXS-97 edn, University of Göttingen, Göttingen

  49. Spek AL (2003) J Appl Crystallogr 36:7

    Article  CAS  Google Scholar 

  50. Lineweaver H, Burk D (1934) J Am Chem Soc 56:658

    Article  CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian, Wallingford CT

  52. Becke ADJ (1993) J Chem Phys B 98:5648

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful for generous support by the German Science Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Comba.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Born, K., Comba, P., Daubinet, A. et al. Catecholase activity of dicopper(II)-bispidine complexes: stabilities and structures of intermediates, kinetics and reaction mechanism. J Biol Inorg Chem 12, 36–48 (2007). https://doi.org/10.1007/s00775-006-0161-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0161-2

Keywords

Navigation