JBIC Journal of Biological Inorganic Chemistry

, Volume 11, Issue 6, pp 695–701 | Cite as

The performance of hybrid DFT for mechanisms involving transition metal complexes in enzymes

Commentary

Abstract

The accuracy of density functional theory with the B3LYP functional is reviewed for systems of relevance to transition-metal-containing enzymes. Calculated energies are commonly within 3–5 kcal/mol of the correct values; however, some exceptions have appeared in the literature and are discussed here. For example, the binding of NO and that of O2 to metal centers have for some time been known to be underestimated. Most barriers for chemical reactions are overestimated except those involving hydrogen (or proton) transfer, which instead tend to be underestimated. A minor general improvement of the accuracy can probably be obtained by slightly reducing the amount of exact exchange in the B3LYP functional.

References

  1. 1.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  2. 2.
    Siegbahn PEM (2003) Q Rev Biophys 36:91–145PubMedCrossRefGoogle Scholar
  3. 3.
    Siegbahn PEM (2001) J Comput Chem 22:1634–1645CrossRefGoogle Scholar
  4. 4.
    Blomberg MRA, Siegbahn PEM (2006) J Comput Chem 27:1373–1384PubMedCrossRefGoogle Scholar
  5. 5.
    Siegbahn PEM, Borowski T (2006) Acc Chem Res (submitted)Google Scholar
  6. 6.
    Bauschlicher CW Jr, Ricca A, Partridge H, Langhoff SR (1997) In: Chong DP (ed) Recent advances in density functional methods, part II. World Scientific, Singapore, p 165Google Scholar
  7. 7.
    Siegbahn PEM, Blomberg MRA (1999) Annu Rev Phys Chem 50:221–249PubMedCrossRefGoogle Scholar
  8. 8.
    Lundberg M, Siegbahn PEM (2005) J Comput Chem 26:661–667PubMedCrossRefGoogle Scholar
  9. 9.
    Vydrov OA, Scuseria GE (2005) J Chem Phys 122:184107PubMedCrossRefGoogle Scholar
  10. 10.
    Lundberg M, Siegbahn PEM (2005) J Chem Phys 122:224103PubMedCrossRefGoogle Scholar
  11. 11.
    Lundberg M, Siegbahn PEM (2005) J Phys Chem B 109:10513–10520PubMedCrossRefGoogle Scholar
  12. 12.
    Blomberg MRA, Siegbahn PEM, Babcock GT (1998) J Am Chem Soc 120:8812–8824CrossRefGoogle Scholar
  13. 13.
    Friesner RA, Knoll EH, Cao Y (2006) J Chem Phys (in press)Google Scholar
  14. 14.
    Noodleman L, Case DA (1992) Adv Inorg Chem 38:423–470CrossRefGoogle Scholar
  15. 15.
    Edgecombe KE, Becke AD (1995) Chem Phys Lett 244:427–432CrossRefGoogle Scholar
  16. 16.
    Siegbahn PEM (1996) Adv Chem Phys 93:333–387CrossRefGoogle Scholar
  17. 17.
    Ghosh A, Taylor PR (2003) Curr Opin Chem Biol 7:113–124PubMedCrossRefGoogle Scholar
  18. 18.
    Gherman BF, Cramer CJ (2004) Inorg Chem 43:7281–7283PubMedCrossRefGoogle Scholar
  19. 19.
    Johansson AJ, Blomberg MRA, Siegbahn PEM (2006) Inorg Chem 45:1491–1497PubMedCrossRefGoogle Scholar
  20. 20.
    Fry HC, Scaltrito DV, Karlin KD, Meyer GJ (2003) J Am Chem Soc 125:11866–11871PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang CX, Kaderli S, Costas M, Kim E-I, Neuhold Y-M, Karlin KD, Zuberbuhler AD (2003) Inorg Chem 42:1807–1824PubMedCrossRefGoogle Scholar
  22. 22.
    Blomberg LM, Blomberg MRA, Siegbahn PEM (2005) J Inorg Biochem 99:949–958PubMedCrossRefGoogle Scholar
  23. 23.
    Bassan A, Borowski T, Siegbahn PEM (2004) J Chem Soc Dalton Trans:3153–3162Google Scholar
  24. 24.
    Jensen KP, Ryde U (2003) J Phys Chem B 107:7539–7545Google Scholar
  25. 25.
    Blomberg LM, Blomberg MRA, Siegbahn PEM (2006) Biochim Biophys Acta 1757:31–46PubMedCrossRefGoogle Scholar
  26. 26.
    Volbeda A, Hol WG (1989) J Mol Biol 209:249–279PubMedCrossRefGoogle Scholar
  27. 27.
    Magnus KA, Hazes B, Ton-That H, Bonaventura C, Bonaventura J, Hol WG (1994) Proteins Struct Funct Genet 19:302–309PubMedCrossRefGoogle Scholar
  28. 28.
    Flock M, Pierloot K (1999) J Phys Chem A 103:95–102CrossRefGoogle Scholar
  29. 29.
    Siegbahn PEM (2003) J Biol Inorg Chem 8:577–585PubMedGoogle Scholar
  30. 30.
    Siegbahn PEM (2003) Faraday Symp Chem Soc 124:289–296Google Scholar
  31. 31.
    Pierloot K (2001) In: Cundari TR (ed) Computational organometallic chemistry. Dekker, New York, pp 123–158Google Scholar
  32. 32.
    Rode MF, Werner HJ (2005) Theor Chem Acc 114:309–317CrossRefGoogle Scholar
  33. 33.
    Cramer JC, Wloch M, Piecuch P, Puzzarini C, Gagliardi L (2006) J Phys Chem A 110:1991–2004PubMedCrossRefGoogle Scholar
  34. 34.
    Siegbahn PEM (2003) J Biol Inorg Chem 8:567–576PubMedGoogle Scholar
  35. 35.
    Raghavachari K, Trucks GW (1989) J Chem Phys 91:1062–1065CrossRefGoogle Scholar
  36. 36.
    Siegbahn PEM, Svensson M, Boussard PJE (1995) J Chem Phys 102:5377–5386CrossRefGoogle Scholar
  37. 37.
    Blomberg MRA, Siegbahn PEM, Svensson M (1996) J Chem Phys 104:9546–9554CrossRefGoogle Scholar
  38. 38.
    Siegbahn PEM, Haeffner F (2004) J Am Chem Soc 126:8919–8932PubMedCrossRefGoogle Scholar
  39. 39.
    Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48–55Google Scholar

Copyright information

© SBIC 2006

Authors and Affiliations

  1. 1.Department of Physics, AlbaNova University CenterStockholm UniversityStockholmSweden

Personalised recommendations