Skip to main content
Log in

Binding of tetrakis(pyrazoliumyl)porphyrin and its copper(II) and zinc(II) complexes to poly(dG-dC)2 and poly(dA-dT)2

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Interactions of cationic porphyrins bearing five-membered rings at the meso position, meso-tetrakis(1,2-dimethylpyrazolium-4-yl)porphyrin (MPzP; M is H2, CuII or ZnII), with synthetic polynucleotides poly(dG-dC)2 and poly(dA-dT)2 have been characterized by viscometric, visible absorption, circular dichroisim and magnetic circular dichroism spectroscopic and melting temperature measurements. Both H2PzP and CuPzP are intercalated into poly(dG-dC)2 and are outside-bound to the major groove of poly(dA-dT)2, while ZnPzP is outside-bound to the minor groove of poly(dA-dT)2 and surprisingly is intercalated into poly(dG-dC)2. The binding constants of the porphyrin and poly(dG-dC)2 and poly(dA-dT)2 are on the order of 106 M−1 and are comparable to those of other cationic porphyrins so far reported. The process of the binding of the porphyrin to poly(dG-dC)2 and poly(dA-dT)2 is exothermic and enthalpically driven for H2PzP, whereas it is endothermic and entropically driven for CuPzP and ZnPzP. These results have revealed that the kind of the central metal ion of metalloporphyrins influences the characteristics of the binding of the porphyrins to DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haq I, Trent JO, Chowdhry BZ, Jenkins TC (1999) J Am Chem Soc 121:1768–1779

    Article  CAS  Google Scholar 

  2. Hurley LH, Wheelhouse RT, Sun D, Kerwin SM, Salazar M, Fedoroff OY, Han FX, Han H, Izbicka E, Von Hoff DD (2000) Pharmacol Ther 85:141–158

    Article  PubMed  CAS  Google Scholar 

  3. Yamashita T, Uno T, Ishikawa Y (2005) Bioorg Med Chem 13:2423–2430

    Article  PubMed  CAS  Google Scholar 

  4. Sirish M, Schneider HJ (1999) Chem Commun 907–908

  5. Pratviel G, Bernadou J, Meunier B (1996) Met Ions Biol Syst 33:399–426

    PubMed  CAS  Google Scholar 

  6. Pogozelski WK, Tullius TD (1998) Chem Rev 98:1089–1107

    Article  PubMed  CAS  Google Scholar 

  7. Burrows CJ, Muller JG (1998) Chem Rev 98:1109–1151

    Article  PubMed  CAS  Google Scholar 

  8. Armitage B (1998) Chem Rev 98:1171–1200

    Article  PubMed  CAS  Google Scholar 

  9. Mauro ED, Saladino R, Tagliatesta P, Sanctis VD, Negri R (1998) J Mol Biol 282:43–57

    Article  PubMed  Google Scholar 

  10. Pasternack RF, Gibbs EJ (1996) Met Ions Biol Syst 33:367–397

    PubMed  CAS  Google Scholar 

  11. Mukundan NE, Petho G, Dixon DW, Kim MS, Marzilli LG (1994) Inorg Chem 33:4676–4687

    Article  CAS  Google Scholar 

  12. Mukundan NE, Petho G, Dixon DW, Marzilli LG(1995) Inorg Chem 34:3677–3687

    Article  CAS  Google Scholar 

  13. McClure JE, Baudouin L, Mansuy D, Marzilli LG (1997) Biopolymers 42:203–217

    Article  PubMed  CAS  Google Scholar 

  14. Guliaev AB, Leontis NB (1999) Biochemistry 38:15425–15437

    Article  PubMed  CAS  Google Scholar 

  15. Borissevitch IE, Gandini SCM (1998) J Photochem Photobiol B 43:112–120

    Article  PubMed  CAS  Google Scholar 

  16. Dixon DW, Steullet V (1998) J Inorg Biochem 69:25–32

    Article  PubMed  CAS  Google Scholar 

  17. Sirish M, Schneider HJ (2000) Chem Commun 23–24

  18. Tjahjono DH, Akutsu T, Yoshioka N, Inoue H (1999) Biochim Biophys Acta 1472:333–343

    PubMed  CAS  Google Scholar 

  19. Tjahjono DH, Yamamoto T, Ichimoto S, Yoshioka N, Inoue H (2000) J Chem Soc Perkin Trans 1:3077–3081

    Article  Google Scholar 

  20. Yamamoto T, Tjahjono DH, Yoshioka N, Inoue H (2004) Bull Chem Soc Jpn 76:1947–1955

    Article  Google Scholar 

  21. Barnes NR, Schreiner AF, Finnegan MG, Johnson MK (1998) Biospectroscopy 4:341–352

    Article  PubMed  CAS  Google Scholar 

  22. Barnes NR, Schreiner AF, Dolan MA (1998) J Inorg Biochem 72:1–12

    Article  PubMed  CAS  Google Scholar 

  23. Barnes NR, Schreiner AF (1998) Inorg Chem 37:6935–6938

    Article  PubMed  CAS  Google Scholar 

  24. Barnes NR, Stroud PD, Robinson KE, Horton C, Schreiner AF (1999) Biospectroscopy 5:179–188

    Article  PubMed  CAS  Google Scholar 

  25. Lipscomb LA, Zhou FX, Presnell SR, Woo RJ, Peek ME, Plaskon RR, Williams LD (1996) Biochemistry 35:2818–2823

    Article  PubMed  CAS  Google Scholar 

  26. Bennett M, Krah A, Wien F, Garman E, Mckenna R, Sanderson M, Neidle S (2000) Proc Natl Acad Sci USA 97:9476–9481

    Article  PubMed  CAS  Google Scholar 

  27. Mueller W, Crothers DM (1968) J Mol Biol 35:251–290

    Article  CAS  Google Scholar 

  28. Schmechel DEV, Crothers DM (1971) Biopolymers 10:465–480

    Article  PubMed  CAS  Google Scholar 

  29. Weiss C Jr (1972) J Mol Spectrosc 44:37–80

    Article  CAS  Google Scholar 

  30. Lyng R, Rodger A, Nordén B (1991) Biopolymers 31:1709–1720

    Article  PubMed  CAS  Google Scholar 

  31. Lyng R, Rodger A, Nordén B (1992) Biopolymers 32:1201–1214

    Article  PubMed  CAS  Google Scholar 

  32. Lyng R, Härd T, Nordén B (1987) Biopolymers 26:1327–1345

    Article  PubMed  CAS  Google Scholar 

  33. Kubista M, Akerman B, Nordén B (1988) J Phys Chem 92:2352–2356

    Article  CAS  Google Scholar 

  34. Stephens PJ, Suëtaak W, Schatz PN (1966) J Chem Phys 44:4592–4602

    Article  PubMed  CAS  Google Scholar 

  35. Buckingham AD, Stephens PJ (1966) Annu Rev Phys Chem 17:399–432

    Article  CAS  Google Scholar 

  36. Gale R, McCaffery AJ, Rowe MD (1972) J Chem Soc Dalton Trans 596–604

  37. Sutherland JC (1978) In: Dolphin D (ed) The porphyrins, vol III. Academic, New York, pp 225–246

  38. Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) J Am Chem Soc 111:3051–3058

    Article  CAS  Google Scholar 

  39. Onuki J, Ribas AV, Medeiros MHG, Araki K, Toma HE, Catalani LH, Mascio PD (1996) Photochem Photobiol 63:272–277

    Article  PubMed  CAS  Google Scholar 

  40. Mettath S, Munson BR, Pandey RK (1999) Bioconjugate Chem 10:94–102

    Article  CAS  Google Scholar 

  41. Hypercube (2005) HyperChem release 7.52 Professional. Hypercube, Gainesville

  42. Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Biochemistry 31:9319–9324

    Article  PubMed  CAS  Google Scholar 

  43. Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Biochemistry 32:2573–2584

    Article  PubMed  CAS  Google Scholar 

  44. Bloomfield VA, Crothers DM, Tinoko I Jr (eds) (2000) Nucleic acids: structures, properties, and functions. University Science Books, Sausalito, pp 535–596

  45. Banville DL, Marzilli LG, Strickland JA, Wilson WD (1986) Biopolymers 25:1837–1858

    Article  PubMed  CAS  Google Scholar 

  46. Strickland JA, Banville DL, Wilson WD, Marzilli LG (1987) Inorg Chem 26:3398–3406

    Article  CAS  Google Scholar 

  47. Gray TA, Yue KT, Marzilli LG (1991) J Inorg Biochem 41:205–219

    Article  PubMed  CAS  Google Scholar 

  48. Marzilli LG, Petho G, Lin M, Kim MS, Dixon DW (1992) J Am Chem Soc 144:7575–7577

    Article  Google Scholar 

  49. Gouterman M (1959) J Chem Phys 30:1139–1161

    Article  CAS  Google Scholar 

  50. Chirvony VS, Galievsky VA, Terekhov SN, Dzhagarov BM, Ermolenkov VV, Turpin PY (1999) Biospectroscopy 5:302–312

    Article  CAS  Google Scholar 

  51. Fiel RJ, Howard JC, Mark EH, Datta-Gupta N (1979) Nucleic Acids Res 6:3093–3118

    Article  PubMed  CAS  Google Scholar 

  52. Ogoshi H, Mizutani T, Hayashi T, Kuroda Y (1999) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 6. Academic, San Diego, pp 279–340

  53. Chaires JB (1997) Biopolymers 44:201–215

    Article  PubMed  CAS  Google Scholar 

  54. Galievsky V, Chirvony V, Ermolenkov V, Kruglik S, Mojzes P, Turpin PY (1997) In: Carmona P, Navarro R, Hernanz A (eds) Spectroscopy of biological molecules: modern trends. Kluwer, Dordrecht, pp 351–354

  55. Tunis MJB, Hearst JE (1968) Biopolymers 6:1345–1353

    Article  CAS  Google Scholar 

  56. Feig M, Pettitt BM (1998) Biopolymers 48:199–209

    Article  PubMed  CAS  Google Scholar 

  57. Saenger W (1984) In: Cantor CR (ed) Principles of nucleic acids structure. Springer, Berlin Heidelberg New York, pp 368–384

Download references

Acknowledgements

This research was supported in part by a Grant-in-Aid for Scientific Research (no. 13554025) from the Ministry of Education, Science, Sports, and Culture of the Japanese Government and a Competitive Research Grant (HB XIII/2005) from the Ministry of National Education of the Indonesian Government. D.H.T. wishes to thank the Hitachi Scholarship Foundation, Tokyo, Japan, for financial support through the Hitachi Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenari Inoue.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tjahjono, D.H., Kartasasmita, R.E., Nawawi, A. et al. Binding of tetrakis(pyrazoliumyl)porphyrin and its copper(II) and zinc(II) complexes to poly(dG-dC)2 and poly(dA-dT)2 . J Biol Inorg Chem 11, 527–538 (2006). https://doi.org/10.1007/s00775-006-0105-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0105-x

Keywords

Navigation